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Abstract 
The growing demand for the sustainable and cost-effective production of probiotics and postbiotics has highlighted the 
potential of saline and marine plants as novel substrates. These plants, including seaweeds and halophytes, are abundant 
and nutrient-rich and require minimal resources, making them ideal candidates for green biorefineries. The incorporation of 
saline plant-based feedstocks could lower media costs and environmental impact, as these plants do not require arable land or 
freshwater while contributing to carbon sequestration and sustainable farming. The development of integrated biorefineries 
could drive economic feasibility by facilitating cost-effective probiotic and postbiotic production. However, challenges such 
as high salt content and lignocellulosic composition may complicate microbial fermentation. This review examines recent 
advancements in leveraging naturally salt-tolerant probiotics and efficient bioconversion methods to address these challenges. 
It explores the nutritional profiles of saline plants, their prebiotic potential, and their synergetic compatibility with diverse 
probiotic strains, including probiotic bacteria and fungi and their metabolites. Additionally, the review discusses state-of-
the-art fermentation techniques tailored to saline plant-based substrates and the possible advantages of saline feedstocks 
for probiotics and postbiotics production through biorefinery pathways. The work highlights the transformative potential 
of saline and marine plant-derived probiotics and postbiotics in health supplementation and biotechnological innovation, 
contributing to biorefinery development within a circular economy framework.

Keywords Seaweed · Halophytes · Probiotics · Postbiotics · Fermentation · Saline feedstock

Introduction

The growing field of probiotics, encompassing beneficial 
microorganisms and their metabolites enhancing human and 
animal health, necessitates sustainable and cost-effective 
production methods. Traditional approaches often rely on 
resource-intensive cultivation methods [1]. With the increas-
ing need for alternative feedstock sources, saline and marine 
plants offer a unique opportunity due to their abundance, 
rich nutrient profiles, low to non-resource requirements, 
and lack of competition with traditional crops [2, 3]. How-
ever, the high salt content of these substrates can pose chal-
lenges for conventional microbial fermentation, as well as 
the lignocellulosic nature of plant material [4, 5]. Recent 
advances in salt-tolerant probiotics and the production of 
bioactive postbiotics from saline plant matter hold signifi-
cant promise for applications in green biorefineries, health 
supplementation, and sustainable/regenerative agriculture. 
This review explores the potential of utilizing saline/marine 
plants as novel feedstock for the production of probiotics 
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and postbiotics, addressing current knowledge and future 
prospects in this emerging field, as illustrated in Fig. 1.

Types of Probiotics

Probiotics are defined as live microorganisms that pro-
vide health benefits to the host [6], and postbiotics, the 
bioactive compounds produced during fermentation, 
have gained significant attention for their roles in human 
health, animal nutrition, and biotechnological applications 
[7]. Bacterial probiotics constitute a significant domain, 
including lactic acid bacteria (LAB), which are charac-
terized by the ability to convert sugars into lactic acid. 
Lactobacillus, Bifidobacterium, and Enterococcus are 

well-studied, and the most common LAB genera used as 
probiotics [8]. They were directly connected to the support 
of gut health and overall maintained human and animal 
well-being [9–11]. Other less represented but still well-
studied and proven bacterial probiotic genera include 
Streptococcus, Bacillus, Escherichia, Pediococcus, Lac-
tococcus, and Propionibacterium [12–14].

In the case of yeast probiotics, there are significantly 
fewer strain numbers than bacterial probiotics; however, 
they are still very relevant. The most commonly used probi-
otic and clinically proven is Saccharomyces cerevisiae var. 
boulardii [15]. This yeast has been extensively studied for 
its health benefits and safety profile, showing its ability to 
improve digestion, enhance gut barrier function, and provide 

Fig. 1  Overview of saline/marine plant-based probiotics and postbiotics (bioactive metabolites), and their commercial applications
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antimicrobial activity against pathogens. It is particularly 
effective in treating antibiotic-associated diarrhea and vari-
ous gastrointestinal disorders [15]. Moreover, this strain has 
shown to be an excellent producer of postbiotic compounds, 
demonstrating the metabolism of a large variety of bioac-
tive compounds [16]. Beyond S. boulardii, there are other 
non-Saccharomyces yeasts with probiotic potential, which 
include genera of Kluyveromyces, Pichia, Candida, Yar-
rowia, Debaryomyces, Kazachstania, Wickerhamomyces, 
and Rhodotorula [17]. Notably, Kluyveromyces marxianus 
is the only non-Saccharomyces yeast commercially available 
probiotic supplement and has extensively been validated 
for its beneficial effects on human and animal health [18]. 
Moreover, the discovery of potential probiotic yeast strains 
continues to grow, driven by increasing research interest in 
this field. For example, yeast such as Cyberlindnera jadi-
nii [19] has shown probiotic potential due to a symbiotic 
relationship with probiotic bacteria [20] and demonstrated 
anti-inflammatory effects on the gut [21].

When it comes to filamentous fungi, there were species 
that demonstrated benefits to animal health and are often 
derived from traditionally fermented food. The most com-
mon genus with potential probiotic properties is Asper-
gillus [22]. Jasim et al. [23] confirmed the probiotic role 
of Aspergillus niger in common carp since it improved 
growth, immunity, digestion, and fish hematology. Asper-
gillus awamori was demonstrated as an excellent probiotic 
feed additive to broiler chickens, increasing overall health, 
metabolism, and growth [24, 25]. Aspergillus oryzae is 
another Aspergillus species widely used as a probiotic in 
poultry, demonstrating benefits such as enhanced growth, 
improved nutrient digestibility, and better intestinal health 
[26]. Beyond Aspergillus, other less common but notable 
molds also exhibit probiotic potential. For instance, Rhizo-
pus oryzae showed good probiotic properties and fermen-
tative capacities [27]. Similarly, Rhizopus oligosporus has 
been recognized for its probiotic potential, with studies in 
pigs indicating improved growth, digestion, microbiome bal-
ance, and immune function [28].

Types of Postbiotics

Postbiotics, composed of inactivated/dead microorganisms, 
their cellular components, and metabolites, can be catego-
rized into various groups based on their chemical origin. 
Carbohydrates, such as polysaccharides like teichoic acids 
and galactose-rich polysaccharides, are essential for various 
biological activities [29]. Exopolysaccharides (EPS), which 
are high-molecular-weight polymers secreted by microor-
ganisms such as bacteria Lactobacillus, Bifidobacterium, 
and Pseudomonas and fungi Kluyveromyces and Saccharo-
myces, play essential roles in biofilm formation, microbial 
adhesion, and protection against environmental stressors. 

EPS have been shown to possess immunomodulatory effects, 
enhancing the immune response and exhibiting anti-inflam-
matory properties [30]. Proteins, including specific extra-
cellular peptides such as p40 and p75 molecules, have been 
shown to exert a significant role in gut health and immune 
modulation [31]. Additionally, enzymes produced during 
fermentation processes play a vital role in the breakdown of 
substrates and can enhance the bioavailability of nutrients, 
thus mitigating digestive syndromes [32]. Furthermore, cer-
tain peptides, known as bacteriocins, act as antimicrobial 
agents, exhibiting antibacterial or antiviral properties that 
enhance the host’s immune defense [33].

Short-chain fatty acids (SCFAs) such as acetate, butyrate, 
and propionate are critical for gut health, serving as energy 
sources for colonocytes and playing roles in anti-inflamma-
tory processes [34]. Gamma-aminobutyric acid (GABA), 
a neurotransmitter produced by certain Lactobacillus and 
Bifidobacterium, is another important postbiotic that plays 
a role in reducing stress, improving sleep, and regulating 
metabolism [35]. Another standard product of bacterial pro-
biotics, lactate, is a significant metabolite that is associated 
with gut health benefits [36]. Furthermore, organic acids, 
such as phenyllactic acid (PLA) and propionic acid, play 
notable roles in modulating gut health and microbial bal-
ance [37, 38]. Cell wall fragments derived from bacterial 
cell walls also contribute to postbiotic activity. These frag-
ments include teichoic acids and lipoteichoic acids, which 
can stimulate immune responses by activating various sign-
aling pathways in host cells [39]. Another significant group 
of postbiotics is vitamins, mainly B-group vitamins and 
vitamin K, produced by both bacterial and fungal probiot-
ics [40, 41].

As research into probiotics and postbiotics continues to 
evolve, increasing attention is being directed toward the 
substrates used in their cultivation. The nutritional profile, 
chemical composition, and bioactive potential of these sub-
strates can significantly influence both microbial growth and 
the nature of the resulting postbiotic compounds [42, 43]. In 
this context, saline and marine plants have emerged as prom-
ising feedstocks. Their ability to thrive in harsh environ-
ments is often accompanied by a unique metabolite profile, 
including osmoprotectants, phenolics, and polysaccharides, 
which may synergize with probiotic activity or enhance post-
biotic production [44–47]. The following sections explore 
the composition of these unconventional feedstocks and their 
compatibility with probiotic cultures.

Composition of Saline/Marine Plant‑Based 
Feedstocks

Saline and marine plants, including halophytes and sea-
weeds, possess unique nutritional profiles, potentially sup-
porting probiotic growth. Seaweeds, for instance, are rich in 
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carbohydrates, proteins, lipids, vitamins, and minerals [2, 
48]. Their diverse polysaccharide composition, including 
alginates, fucans, and galactans, offers potential prebiotic 
effects, stimulating the growth of specific probiotic bacteria 
[46]. These polysaccharides are known for their beneficial 
properties, acting as antioxidants, anti-inflammatories, and 
even anticancer agents [46]. The specific composition varies 
greatly among species, seasons, and locations [45], neces-
sitating careful selection of seaweed species based on the 
target probiotic strain and/or economic and environmental 
needs.

One of the key considerations in biomass utilization is its 
salt content, which can hinder or even inhibit the pretreat-
ment, cultivation of probiotics, and the production of post-
biotics. Salt is often found as part of the ash content, which 
is typically undesirable in biorefining processes. In some 
instances, ash may be the predominant component in sea-
weed biomass, making certain species unsuitable for biore-
fining. Olsson et al. [2] examined the ash content in various 
species of red, green, and brown seaweeds along the Swed-
ish west coast, revealing that the ash content ranged between 
118 and 419 g/kg of dry weight, depending on the seaweed 
species. Furthermore, the weight of salt would be consider-
ably higher if the total salt content were considered rather 
than just metals in the ash. However, taking into account the 
carbohydrate content of 237 to 557 g/kg dry weight [2], it 
can be expected that the biomass will be diluted five to ten 
times with water or aqueous solution for microbial cultiva-
tion, ensuring an appropriate range of nutrients. This would 
result in a metal content range of approximately 5.4 to 31.4 
g/L in the cultivation medium, corresponding to 0.5% to 3% 
w/v, making it a possible feedstock for probiotic cultivation.

Another study of 15 seaweed species of red, green, and 
brown algae in Sri Lanka demonstrated even greater fluctua-
tions in ash content between species, ranging from 14.1 to 
474 g/kg of dry weight [4]. Similarly, a study on brown algae 
from Danish and Icelandic waters showed that ash content in 
brown seaweeds ranged from 295 to 544 g/kg of dry weight 
[49]. Based on these findings, it would be reasonable to con-
sider probiotic strains with high salt tolerance or, ideally, 
halophilic strains.

As demonstrated by multiple screening studies, seaweeds 
are generally rich in sugar content, primarily derived from 
various polysaccharides. A comprehensive review indicates 
that carbohydrate content ranges from 201 to 767 g/kg dry 
weight, protein from 23 to 234 g/kg dry weight, and lipids 
from 30 to 228 g/L [50]. Similarly, these values align with 
extensive screening conducted by Olsson and colleagues 
[2], showing a carbohydrate content between 237 and 557 
g/kg dry weight and protein levels ranging from 59 to 201 
g/kg dry weight. However, these carbohydrates are mostly 
not available as free fermentable sugars but are instead pre-
sent as complex polysaccharides with significant structural 

diversity [51]. For example, green macroalgae primarily 
contain mannan, ulvan, starch, cellulose, and some mono-
saccharides (glucose, mannose, rhamnose, xylose), contrib-
uting to both structural integrity and energy storage. Red 
macroalgae are rich in carrageenan, agar, cellulose, lignin, 
monosaccharides (glucose, galactose), and agarose. Brown 
macroalgae predominantly contain laminarin, mannitol, algi-
nate, fucoidan, cellulose, and fucose, essential for their flex-
ibility, storage functions, and bioactive properties [51, 52]. 
It was demonstrated that laminaran stimulated the growth 
of Bifidobacteria and Bacteroides, and ulvan stimulated the 
growth of Bifidobacteria and Lactobacilli, supporting the 
idea of prebiotic properties of seaweed saccharides [53].

Although seaweeds are nutritious and can be directly fer-
mented using solid-state fermentation (SSF) or submerged 
fermentation, the resulting yield and processing time may be 
inefficient [54]. Therefore, seaweed-based biorefineries often 
rely on pretreatment methods such as physical, chemical, 
and enzymatic techniques to recover fermentable nutrients 
and enhance biomass-to-product conversion efficiency [52, 
55].

Emerging super-crops halophytes, adapted to saline envi-
ronments, also offer unique nutritional profiles. Their high 
salt tolerance is often coupled with the accumulation of pro-
line and glycine betaine, which might influence probiotic 
growth [56]. Halophytes are also rich in sugars, proteins, and 
other essential nutrients [57–59], making them potentially 
valuable feedstocks. However, the presence of potentially 
harmful secondary metabolites in some wild halophytes 
requires careful screening and selection of suitable species 
[60].

Like seaweeds, halophytes contain a high concentration 
of salt on a dry matter basis, highlighting their similarity to 
algal biomass. Ash content in halophytes has been reported 
to range from 5.2% to 43% w/w of dry weight, varying by 
species, location, and plant part [61]. Similarly, Hulkko et al. 
[5] found that ash content in various European halophyte 
species ranged from 16% to 56% w/w, further emphasiz-
ing their compositional resemblance to seaweed biomass. 
Moreover, halophytes exhibit diverse compositions, with 
carbohydrate content ranging from 120 to 347 g/kg dry 
weight, protein content from 150 to 300 g/kg dry weight, and 
a consistently low lipid content of less than 4% w/w on a dry 
matter basis [5]. Abideen and coworkers [62] analyzed the 
polysaccharide composition of cellulose and hemicellulose 
in dozens of halophyte species, reporting values between 
220 and 667 g/kg dry weight.

Additionally, both seaweeds and halophytes are rich in 
bioactive compounds such as chlorophylls, carotenoids, 
phenolics, and vitamins [44, 57, 63]. It has been shown 
that seaweed metabolites are frequently prebiotic and can 
modulate microbial communities, promoting the growth of 
beneficial probiotic bacteria [64–66]. Likewise, halophyte 
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extracts have been shown to stimulate the growth of probi-
otic strains while selectively inhibiting common pathogens 
[67, 68]. Moreover, halophyte-based extracts have been 
demonstrated as excellent antimicrobial agents against 
common pathogens [69, 70]. For instance, Campana et al. 
[71] conducted a comparative analysis of essential oils 
from various halophyte species and found that Cuminum 
cyminum, Crithmum maritimum, and Pimpinella anisum 
were effective against all tested microorganisms, including 
Escherichia coli, Listeria monocytogenes, Staphylococcus 
aureus, Pseudomonas fluorescens, and Candida albicans. 
Essaidi and colleagues [72] also reported the antimicro-
bial activity of Salicornia herbacea extract against several 
pathogenic strains, such as S. aureus, E. coli, and Kleb-
siella pneumoniae. In another study, Avicennia marina 
extract showed strong inhibition against C. albicans and B. 
subtilis, with moderate effects on Salmonella typhimurium 
and Vibrio damsela [73]. Additionally, Sánchez-Hernán-
dez et al. [74] demonstrated that extracts from Limonium 
binervosum possess both antimicrobial and antifungal 
activity, partially or completely suppressing the growth of 
plant pathogens including Xylophilus ampelinus, Erwinia 
amylovora, and Diplodia seriata. These findings support 
the idea that the selective antimicrobial compounds natu-
rally found in saline/marine plants, which target non-pro-
biotic microorganisms, could help control contamination 
during fermentation and extend product shelf life, thereby 
significantly enhancing the cost-effectiveness of the biore-
finery concept. The potential of selective antimicrobial 
compounds naturally present in saline and marine plants to 
control contamination during fermentation, enhance prod-
uct shelf life, and ultimately improve the cost-effectiveness 
of the biorefinery concept.

In the case of halophyte-based biorefinery, preference 
lies in the extraction of high-value bioactive compounds 
from juiced fibers, as demonstrated by Fredsgaard et al. 
[75] and Hulkko et al. [59]. Extract-free halophyte ligno-
cellulosic fibers can be used to produce bulk biochemicals 
[76–78] and bioenergy [79], and halophyte juice can be 
processed in protein-enriched feed [80]. Generally, the 
extraction and processing of bioactive compounds from 
saline/marine plants require efficient and sustainable 
methods. Biorefinery approaches, which integrate mul-
tiple processing steps to maximize resource efficiency, 
are particularly relevant in this scenario [52, 55, 81]. The 
integration of bioconversion processes further enhances 
the sustainability of this approach. Microbial fermenta-
tions, using specific bacteria and/or fungi, can convert 
plant biomass into valuable products, including probiot-
ics themselves [54, 82, 83]. This approach could minimize 
waste and enhance the overall efficiency of the process. 
Furthermore, the use of microbial fermentations can also 
improve the digestibility and bioavailability of nutrients in 

the seaweed and halophyte biomasses [84, 85], contribut-
ing to a circular economy.

Compatibility of Probiotic Cultures with Saline 
Environments and Plant Metabolites

The selection of appropriate probiotic strains is crucial for 
ensuring their effectiveness in production from saline feed-
stocks. Different strains exhibit varying levels of tolerance 
to salinity and the specific components found in seaweed 
and halophytes, which can influence their viability and per-
formance. Interestingly, probiotic microorganisms are inher-
ently tolerant to high salt concentrations, making them ideal 
candidates for production. The reason for their tolerance lies 
in their ability to adapt cellular mechanisms, such as osmotic 
regulation and stress response pathways, which allow them 
to thrive in environments with elevated salinity [86, 87]. This 
tolerance enhances their potential for use in the fermenta-
tion of products derived from saline sources, improving both 
their stability and efficacy in such applications.

Probiotic bacterial genera, including Lactobacillus, Bifi-
dobacterium, and Bacillus, are known for their salt toler-
ance, as demonstrated by numerous studies. For instance, 
Lactobacillus sakei has been shown to withstand up to 10% 
NaCl (w/v), while Lactobacillus oris tolerates up to 7% 
NaCl [88, 89]. Additionally, Lactobacillus strains, like L. 
plantarum, L. fermentum, and L. paracasei, demonstrate sur-
vival in environments containing up to 4% NaCl (w/v) [90].

Bifidobacterium strains are also known to tolerate up to 
10% NaCl [91], with some studies even reporting survival 
under more extreme salinity levels. Borges et al. [92] high-
lighted the impressive survival capabilities of probiotic strains 
such as Lactobacillus casei, L. paracasei, L. acidophilus, and 
Bifidobacterium animalis, all of which withstood up to 25% 
(w/v) NaCl. Among the Bacillus species, Bacillus subtilis 
is another strain that shows remarkable resistance, enduring 
up to 10% NaCl (w/v) [93]. Furthermore, research by Yan 
and colleagues [94] demonstrated that Bacillus coagulans 
could resist concentrations of NaCl up to 0.8 mol/L, which is 
approximately equivalent to 4.7% (w/v) NaCl. Other probiotic 
strains, such as Lactococcus lactis, can generally endure up 
to 5% (w/v) NaCl [95], and some strains have even shown 
resilience to concentrations as high as 15% (w/v) NaCl [96].

Similar to probiotic bacteria, probiotic yeast strains also 
exhibit remarkable salt tolerance. For instance, Sengun et al. 
[97] demonstrated that various probiotic strains of Pichia and 
Saccharomyces were still viable at 10% (w/v) NaCl. Addi-
tionally, multiple strains of Debaryomyces hansenii and Toru-
laspora delbrueckii showed growth at 10% (w/v) NaCl and 
beyond [98]. Reyes-Becerril and coworkers [99] also presented 
probiotic marine yeast Y. lipolytica strains that grow at 6.5% 
(w/v) NaCl. These findings suggest that probiotic or poten-
tially probiotic yeasts are well-suited for green biorefinery 
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applications, particularly in the conversion of salty biomass 
into microbial cells and/or their metabolic products.

Furthermore, as indicated in the previous section, probiotic 
microorganisms exhibit an affinity for plant bioactive com-
pounds, such as polyphenols, leading to a dual effect. On the 
one hand, these compounds promote the growth and coloniza-
tion of probiotic bacteria, while on the other, they help reduce 
the presence of pathogenic bacteria [100–102]. The literature 
on the specific effects of polyphenols and other bioactive 
compounds from seaweed and halophytes on probiotic strains 
remains relatively limited compared to other plant sources. 
However, multiple studies have documented the impact of 
algal metabolites on probiotic microorganisms. For example, 
in an 8-week pilot study, mice supplemented with 0.04% w/w 
astaxanthin, a common algal antioxidant, showed an increased 
population of Bifidobacterium [103]. Charoensiddhi et al. 
[104] demonstrated that polysaccharide and phlorotannin-
enriched extracts of the brown seaweed Ecklonia radiata posi-
tively influence the growth of Bifidobacterium, Lactobacillus, 
and Clostridium coccoides. For halophyte extracts, only one 
study has directly linked Crithmum maritimum L. extract to 
the growth stimulation of Lactobacillus bulgaricus [68]. This 
extract also demonstrated antimicrobial activity against the 
pathogens S. aureus, Staphylococcus epidermidis, Candida 
albicans, and Candida parapsilosis, supporting the idea of the 
dual effect of the halophyte-based bioactive compounds [68].

Probiotic and Postbiotic Products Derived 
from Saline/Marine Plant‑Based Feedstocks

Probiotically fermented seaweed has long been a part of var-
ious traditional cuisines. For instance, in Japan, fermented 
kelp is known as Kombu Tsukudani, while in Ireland, Dillisk 

(Palmaria palmata) has historically been fermented. In 
Korea, seaweed is commonly incorporated into fermented 
dishes such as kimchi. Traditionally, fermentation was used 
to enhance flavor and preserve food. However, in the present 
day, fermentation of seaweed and other saline plants is not 
only viewed as a method of food production but also as a 
means to generate specific bioactive compounds, such as 
postbiotics and beneficial microbial cultures with industrial 
applications, as presented in Fig. 2.

Bacterial Probiotics and Postbiotics Derived 
from Macroalgae‑Based Feedstocks

The most extensively studied cultures belong to the Lacto-
bacillus genus, demonstrating promising cell biomass and 
metabolite yields when cultivated on algal-based biomass, 
as demonstrated in Table 1. Nagarajan et al. [105] demon-
strated an impressive conversion of Ulva sp., Gracilaria sp., 
and Sargassum cristaefolium hydrolysates using multiple 
Lactobacillus strains, achieving over 90% sugar-to-product 
conversion into organic acids, yielding up to 37.6 g/L in 
broth, along with microbial cultures. Similarly, Lin et al. 
[110] showed excellent production of L. acidophilus BCRC 
10695 and L. plantarum BCRC 12327 on Gracilaria sp. 
hydrolysate, reaching 9.23 LAB count (log CFU/mL) and 
lactic acid concentration of 19.32 g/L. L. plantarum and L. 
brevis are particularly interesting producers, as demonstrated 
by multiple studies. For example, L. plantarum MTCC 1407 
achieved a lactic acid yield of 109 g/L when fermenting 
hydrolysates of Kappaphycus alvarezii and Gracilaria cor-
ticate [106]. In another study, L. plantarum DSM 20174 fer-
mented Ulva spp. hydrolysate, producing 0.9 g of lactic acid 
per gram of monomeric sugar consumed [126]. Furthermore, 
L. plantarum was compared to other Lactobacillus strains in 

Fig. 2  Overview of previously cultivated microbial genera on saline/marine plants and their postbiotic products
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Table 1  Bacterial probiotics and postbiotics production from specific seaweed species

Type of algae Probiotic strain Product Cultivation conditions Reference

Ulva sp., Gracilaria sp., Sar-
gassum cristaefolium

L. plantarum L-Lactic acid. acetic acid, 
probiotics

Fermentation in liquid phase at 
pH 5.5, 30 °C, 200 RPM

[105]
L. sakei
L. rhamnosus
W. cibaria
W. sp.
W. paramesenteroides

Ulva fasciata, Gracilaria 
corticata, and Kappaphycus 
alvarezii

L. plantarum MTCC 1407 Lactic acid Fermentation in liquid phase at 
37 °C, 100 RPM for 7 days

[106]
L. plantarum MTCC 6161

Alaria esculenta and Saccha-
rina latissima

L. plantarum ATCC 8014 SCFAs (postbiotics) Fermentation in liquid phase at 
37 °C, 100 RPM for 24 h

[107]

A. esculenta Consortia of three L. plantarum 
and one L. brevis

Probiotics, lactic acid, acetic 
acid

Wet fermentation at 37 °C, 100 
RPM for 7 days

[108]

Gracilaria gracilis L. acidophilus Postbiotics, antioxidants, 
enzymes

Wet fermentation at 30 °C and 
37 °C

[109]
L. sakei, Staphylococcus 

carnosus, and Staphylococcus 
xylosus

Staphylococcus xylosus
Gracilaria sp. L. acidophilus BCRC 10695 

and L. plantarum BCRC 
12327

Probiotics and postbiotics Fermentation in liquid phase at 
30 °C for 72 h

[110]

Saccharina japonica L. brevis KCL010 Prebiotics and GABA Fermentation in liquid phase at 
30 °C, 150 RPM for 120 h

[111]

Bangia fusco-purpurea L. delbrueckii CICC 6045 Probiotics and postbiotics Fermentation in liquid phase at 
37 °C for 48 h

[112]
L. plantarum CICC 6076

Ecklonia cava L. brevis Bioactive polysaccharides Fermentation in liquid phase at 
30 °C, 1200 RPM for 24 h

[113]

E. cava L. brevis Bioactive polysaccharides Fermentation in liquid phase at 
30 °C, 1200 RPM for 24 h

[114]

Enteromorpha prolifera L. brevis KCTC 3498 Probiotics and organic acids Fermentation in liquid phase 
at 30 to 37 °C, 170 RPM for 
48 h

[115]
L. casei KCTC 3260
L. plantarum KACC 11451
L. rhamnosus KCTC 3237
L. salivarius KACC 10006

Eucheuma cottonii B. coagulans ATCC 7050 Lactic acid Fermentation in liquid phase at 
37 °C, 100 RPM for 24 h

[116]
L. acidophilus-14

Laminaria japonica B. subtilis N2 Probiotics and anti-inflamma-
tory agents

Fermentation in liquid phase [117]

Porphyra L. plantarum KP3 Lactic acid Fermentation in liquid phase at 
37 °C for 120 h

[118]
L. plantarum KP4
Leuconostoc mesenteroides K8
L. paracasei subsp. paracasei 

DP2
Undaria pinnatifida L. brevis KCL010 GABA and probiotics Fermentation in liquid phase at 

30 °C, 150 RPM for 72 h
[119]

Ulva fasciata Lactococcus lactis Probiotics and organic acids Wet fermentation at 30 °C for 
two days

[120]

Gelidium amansii C. acetobutylicum KCTC 1790 Probiotics, acetic acid, butyric 
acid, antioxidants

Fermentation in liquid phase at 
37 °C, 150 RPM for 7 days

[121]

Gelidium amansii C. acetobutylicum KCTC 1790 Butyric acid Fermentation in liquid phase at 
37 °C, 150 RPM for 9 days

[122]

S. japonica C. acetobutylicum KCTC 1790 Probiotics, acetic acid, butyric 
acid

Fermentation in liquid phase at 
37 °C, 150 RPM for 13 days

[123]
C. tyrobutyricum KCTC 5387
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a separate study, showing the highest cell mass production 
along with organic acid generation when utilizing Entero-
morpha prolifera hydrolysate [115]. Meanwhile, L. brevis 
has shown the ability to efficiently metabolize mannitol, a 
common sugar derivative in brown algae, converting it into 
GABA at concentrations exceeding 3 g/L while simultane-
ously producing viable probiotic cells [119], making it a 
promising microbial cell factory. Furthermore, consortia of 
L. plantarum and L. brevis have demonstrated strong per-
formance on seaweed hydrolysates, achieving cell densities 
over 2.7×107 CFU/mL alongside acetic and lactic acid pro-
duction [108]. These findings underscore the potential of 
Lactobacillus strains in the bioconversion of marine bio-
mass, not only for organic acid production but also for the 
development of functional probiotic applications. Another 
bacterium worth considering is Clostridium acetobutylicum, 
which has shown robust growth and production on seaweed-
based media, as shown in Table 1. However, its bioconver-
sion processes are generally time-intensive, often requiring 
days to weeks of cultivation.

Fungal Probiotics and Postbiotics Derived 
from Macroalgae‑Based Feedstocks

In the case of fungal probiotics derived from seaweeds, the 
yeasts S. cerevisiae and Candida utilis (also known as C. 
jadinii) are the most prominent, while the filamentous fun-
gus A. oryzae is also noteworthy, as shown in Table 2. How-
ever, fungal probiotics are significantly less represented and 
studied than bacterial cultures. S. cerevisiae demonstrated 
organic acid production of 55.8 g/L, comprising lactic, ace-
tic, and tartaric acids, when cultivated on A. esculenta-based 
feedstock, and 51.5 g/L on S. latissimi-based feedstock, con-
firming its suitability for postbiotic acid production [107]. 
Additionally, S. cerevisiae exhibited comparable cell growth 
on K. alvarezii-based media and synthetic potato dextrose 
broth, reaching over 8.5 log CFU/mL [135]. For C. utilis, 
studies have reported its ability to grow and produce antimi-
crobial compounds in Ecklonia bicyclis water extracts, effec-
tively inhibiting pathogenic growth [130]. More broadly, 
research has focused on its potential to release anti-inflam-
matory compounds, such as phenolics, from algal biomass 
[128, 129]. Furthermore, both yeasts demonstrate superior 
nutritional content, with highly digestible protein, mak-
ing them attractive candidates for biorefinery applications 

[139]. As for A. oryzae, it is a well-studied GRAS (Gener-
ally Recognized as Safe) species, traditionally used in Asian 
food fermentation. It has been successfully cultivated on K. 
alvarezii [134], S. japonica [137], and P. palmata [138], 
highlighting its potential for fungal-based bioprocessing of 
marine biomass. Another particularly interesting mold is 
Monascus spp., widely used in East Asian food fermenta-
tion, known for its ability to bioconvert plant biomass into 
postbiotics such as phenolic compounds and antioxidants 
[131, 132].

Mixed Culture Probiotics and Postbiotics Derived 
from Macroalgae‑Based Feedstocks

Several studies have explored co-cultures of fungal and bac-
terial strains, as summarized in Table 3, with some achieving 
higher yields of target products. For instance, Kombucha 
SCOBY (Symbiotic Culture of Bacteria and Yeast) culti-
vated on A. esculenta and S. latissima-based feedstocks dem-
onstrated enhanced production of organic acids, including 
lactic, tartaric, and acetic acids, compared to pure cultures of 
S. cerevisiae and L. plantarum. Specifically, mixed culture 
SCOBY fermentation produced 56 g/L of total organic acids 
from S. latissima hydrolysate and 63 g/L from A. esculenta 
hydrolysate, emphasizing the potential of microbial consor-
tia to improve bioconversion efficiency [107].

Probiotics and Postbiotics Derived 
from Halophyte‑Based Media

Less explored but emerging as a promising second-gener-
ation feedstock, halophytes have shown high potential for 
probiotic growth and metabolite production. Multiple studies 
have demonstrated their effectiveness as fermentation sub-
strates. For instance, Salicornia ramosissima has been suc-
cessfully used as a salt substitute in white cabbage fermen-
tation, resulting in increased antioxidant activity and total 
phenol content compared to the control [142]. In another 
study, Maoloni et al. [143] demonstrated that L. plantarum 
IMC 509, along with a combination of L. rhamnosus IMC 
501® and L. paracasei IMC 502®, were able to survive and 
maintain their viability for 44 days when incubated in brined 
Sea Fennel (Crithmum maritimum L.), highlighting the 
potential of halophytes as sustainable substrates for probiot-
ics. Additionally, Hulkko [144] demonstrated the successful 

Table 1  (continued)

Type of algae Probiotic strain Product Cultivation conditions Reference

S. japonica and U. pinnatifida C. tyrobutyricum ATCC 25755 Probiotics, acetic acid, butyric 
acid

Fermentation in liquid phase at 
37 °C, 150 RPM

[124]

Saccharina spp. C. acetobutylicum ATCC 824 Probiotics, acetic acid, butyric 
acid

Fermentation in liquid phase 
at 37 °C

[125]
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cultivation of L. plantarum and L. salivarius on the green 
juice of S. ramosissima and Tripolium pannonicum, result-
ing in the production of lactic and acetic acids, suggesting 

that halophyte juices are suitable for Lactobacillus cultiva-
tion. Similarly, it was found that S. cerevisiae effectively 
ferments on halophyte-based hydrolysates, including Juncus 

Table 2  Fungal probiotics and postbiotics production from specific seaweed species

Type of algae Probiotic strain Product Cultivation conditions Reference

A. esculenta and S. latissima S. cerevisiae MTCC 180 SCFAs (postbiotics) Fermentation in liquid phase at 
30 °C, 100 RPM for 24 h

[107]

Ecklonia cava S. cerevisiae Bioactive polysaccharides Fermentation in liquid phase at 
30 °C, 1200 RPM for 24 h

[113]
C. utilis

Cystoseira trinodis A. niger Tiegh. Antioxidants (postbiotics) Wet fermentation at 28 °C, 120 
RPM for 3 days

[127]
Dendryphiella arenaria Nicot
Aspergillus chevalieri L. Mangin
Chaetomium funicola Cooke
 Stachybotrys chartarum 

(Ehrenb.) S. Hughes
Aspergillus nidulans (Eidam) 

Vuill.
E. cava C. utilis ATCC 9950 Phlorotannin (anti-inflamma-

tory)
Fermentation in liquid phase at 

30 °C, 120 RPM for 24 h
[128]

E. cava C. utilis Phenolics/antioxidants (postbiot-
ics)

Fermentation in liquid phase at 
30 °C, 120 RPM for 24 h

[129]

E. cava S. cerevisiae Bioactive polysaccharides Fermentation in liquid phase at 
30 °C, 1200 RPM for 24 h

[114]
C. utilis

Eisenia bicyclis C. utilis YM-1 Antimicrobial activity (postbiot-
ics)

Fermentation in liquid phase at 
30 °C, 120 RPM for 24 h

[130]

S. japonica Red yeast rice (Monascus pur-
pureus)

Phenolics, flavonoids, and anti-
oxidants (postbiotic)

Solid stare fermentation [131]

S. japonica Monascus purpureus KCCM 
60168

Phenolics, flavonoids, and anti-
oxidants (postbiotic)

Wet fermentation with 50% 
moisture content at 30 °C, 20 
days

[132]

Monascus kaoliang KCCM 
60154

Undaria pinnatifida Monascus purpureus KCCM 
60168

Phenolics, flavonoids, and anti-
oxidants (postbiotic)

Wet fermentation with 50% 
moisture content at 30 °C, 20 
days

[132]

Monascus kaoliang KCCM 
60154

Durvillaea spp. Co-culture of Pleurotus, Lenti-
nula, Hericium, and Gano-
derma

Mycoprotein, amino acids, anti-
oxidants (postbiotics)

Fermentation in liquid phase [133]

K. alvarezii A. oryzae Phenolics, flavonoids, and anti-
oxidants (postbiotic)

Solid-state fermentation with 
70% moisture content at 30 °C 
for 2 to 6 days

[134]

K. alvarezii S. cerevisiae Probiotic feed additive Fermentation in liquid phase at 
28 °C, 125 RPM for 48 h

[135]

Macrocystis pyrifera Paradendryphiella salina 
100654

Mycoprotein, phenolics, antioxi-
dants (postbiotics)

Fermentation in liquid phase at 
25 °C, 200 RPM for 8 days

[85]

Ulva spp. Paradendryphiella salina 
100654

Mycoproteins as feed additive Fermentation in liquid phase at 
25 °C, 200 RPM for 4 days

[136]

S. japonica A. oryzae Phenolics, flavonoids, and anti-
oxidants (postbiotic)

Fermentation in liquid phase at 
25 °C for 7 days

[137]

Palmaria palmata Rhizopusmicroscopus var. chin-
ensis IHEM No. 6048

Protein Wet fermentation at 37 °C for 
6 days

[138]

A. oryzae NRRL 1988
Trichoderma pseudokoningii Wet fermentation at 37 °C for 

14 days
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maritimus [145], Salicornia sinus-persica [83], and Salicor-
nia bigelovii [76, 146], further supporting the use of halo-
phytes as viable fermentation substrates. Moreover, Alassali 
et al. [83] demonstrated that S. cerevisiae exhibited excellent 
growth on S. sinus-persica fresh juice, accompanied by the 
production of acetic and lactic acids.

Economic, Environmental, and Industrial 
Perspectives

The global probiotic market is currently valued at approxi-
mately 73 billion USD and is projected to grow to 85 billion 
USD by 2027 [147]. In contrast, postbiotics do not have a 
separate market category. Instead, they are generally incor-
porated into nutraceuticals. The nutraceutical industry had 
an estimated global market cap of 591 billion USD in 2024 
and is forecasted to grow at a compound annual growth rate 
(CAGR) of approximately 7.6% from 2025 to 2030 [148]. 
This growth is driven by increasing consumer health aware-
ness and the demand for more “traditional” or “natural” 
alternatives [149, 150].

In regard to economic and environmental considerations, 
economic analysis of traditional probiotic production, par-
ticularly LAB, has revealed that media costs account for 
over 40% of total production expenses, suggesting an alter-
native carbon source could considerably benefit the overall 
cost-effectiveness of the production [1]. Utilizing saline and 
marine plants as feedstocks for probiotic production pre-
sents several environmental advantages. Unlike conventional 
agricultural crops, seaweed and halophyte cultivation do not 
compete for arable land or freshwater resources [3], thereby 
reducing the environmental footprint. Additionally, seaweed 
and halophytes contribute to carbon sequestration, aiding in 
climate change mitigation [48, 151]. Halophyte cultivation 
on saline lands could also prevent land degradation and help 
restore salinized soils and degraded ecosystems [60].

From the circular economy perspective, the feasibility of 
using saline and marine plants depends on multiple factors, 
including harvesting, processing, and cultivation costs. The 
natural abundance and accessibility of these plants, espe-
cially in coastal regions, may help lower production costs 

[3]. Techno-economic analyses indicate that establish-
ing integrated facilities near the shore could significantly 
reduce operational costs [152]. Furthermore, the production 
of value-added byproducts such as plant extracts and bioac-
tive compounds could further enhance economic viability.

Industrial Prospects

In saline-based biorefineries, high-value product generation 
is the primary driver for industrial adoption, ensuring eco-
nomic feasibility [153]. For example, the EU-funded Macro 
Cascade project evaluated the scalability, feasibility, and 
profitability of various seaweed-based biorefinery products, 
including probiotic feed and food, algal-derived saccharides 
(mannitol, laminarin, fucoidan, alginate), and prebiotic oli-
gosaccharides. The study concluded that probiotic feed and 
food offered the most favorable economic outcomes among 
all investigated scenarios [154].

Another study by Nazemi et al. [155] investigated the 
techno-economic aspects of various process approaches 
using brown macroalgae as feedstock. The analysis dem-
onstrated that producing biofuels was not economically 
viable. Instead, only high-value chemicals derived from 
native algal metabolites showed positive economic out-
comes, generating approximately 374$/tonne of dried 
algae biomass, assuming a plant capacity of 500 ktonne/
year. Similarly, a separate study on a biorefinery based on 
S. latissima found that the most profitable outcomes were 
achieved through the production of value-added products 
such as alginate, mannitol, protein, laminarin, and ferti-
lizer [156]. The best scenario resulted in an estimated 
return of 506$/tonne of dried algae biomass at a plant 
capacity of 200 ktonne/year. In the case of halophytes, 
there is limited research on the economic feasibility of 
halophyte-based biorefineries. Nevertheless, a techno-
economic assessment of Salicornia sp. as a feedstock for 
jet fuel production, using Hermetia illucens for sugar-to-
lipid conversion, demonstrated that the process can be 
both feasible and profitable [81]. However, in the context 
of nutraceuticals, particularly probiotics and postbiotics, 
techno-economic evaluations are still lacking and remain 
to be thoroughly investigated. Additionally, the use of 

Table 3  Mixed bacterial and yeast cultures for probiotics and postbiotics production from specific seaweed species

Type of algae Probiotic strain Product Cultivation conditions Reference

A. esculenta and S. latissima Kombucha SCOBY (Symbiotic Cul-
ture of Bacteria and Yeast)

SCFAs (postbiotics) Wet fermentation at 25 °C, 50 % rela-
tive humidity, 14 days

[107]

Gracilaria vermiculophylla L. casei B5201, D. hansenii Y5201, 
and Candida sp. Y5206

Lactic acid Fermentation in liquid phase [140]

Laminaria japonica S. cerevisiae AMnb091 and L. plan-
tarum LP1406

Postbiotics 
(hypolipidemic 
effects)

Fermentation in liquid phase at 30 °C 
for 2 days with shaking (180 r/min)

[141]
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plant-based feedstocks could eliminate traditional unit 
operations, such as cell separation and washing, thereby 
reducing both capital expenditures (CAPEX) and opera-
tional expenditures (OPEX) [157].

However, several challenges must be considered for the 
successful implementation of saline/marine plant-based 
biorefineries. These include:

1) High salt content, which may cause equipment corrosion 
to some degree [158]

2) Seasonal and climate-dependent variations, as the chem-
ical composition and growth of seaweeds change based 
on season and location [159]

3) Pretreatment requirements, which may necessitate 
enzyme and/or chemical applications to optimize bio-
mass utilization [51, 52]

4) Scaling up bioprocesses, as laboratory-scale successes 
may not directly translate to industrial settings due to 
process inefficiencies, contamination risks, or inconsist-
ent yields

5) Energy and resource intensity, since processing plant 
biomass may require high energy inputs, particularly for 
drying, extraction, and fractionation, increasing opera-
tional costs

6) Storage and shelf life, as saline/marine-derived probi-
otic products may have stability challenges, requiring 
specialized storage conditions to maintain viability.

7) Market acceptance and consumer perception, where 
despite sustainability benefits, consumer skepticism 
about marine/saline plant-derived probiotics and post-
biotics could affect demand, necessitating educational 
efforts

8) Biodiversity and ecosystem concerns, since large-scale 
harvesting of marine/saline plants might have unin-
tended environmental consequences, including biodi-
versity loss and habitat disruption

9) Infrastructure and investment gaps, as specialized biore-
actors, corrosion-resistant equipment, and coastal facili-
ties require significant initial investments

10) Regulatory barriers, where novel production methods 
using marine/saline plants may face additional scrutiny 
from food safety and pharmaceutical regulatory bodies, 
delaying approvals

Strain Improvement and Genetic Engineering 
Considerations

One innovative strategy to overcome process limitations 
in saline/marine plant-based biorefineries is the genetic 
improvement of microbial strains. Strain improvement can 
enhance salt tolerance in probiotic microbes, enabling better 
growth and metabolic activity under high-salinity conditions 
typical of halophyte or marine biomass. These modifications 

may also strengthen their ability to break down complex 
polysaccharides such as lignocellulose and to withstand or 
metabolize inhibitory compounds formed during biomass 
pretreatment, ultimately leading to more efficient bioconver-
sion processes [160]. Generally, direct genetic modifications 
in probiotic cultures are explored to enhance or introduce 
specific therapeutic traits, thereby increasing the product’s 
value. Such genetically modified probiotics (GMPs) are 
often considered therapeutic agents rather than standard 
nutraceuticals [161, 162]. For example, L. lactis IL1403 was 
engineered to secrete antimicrobial peptides such as alyte-
serin and A3 APO, effectively inhibiting Salmonella and 
E. coli without compromising host viability, demonstrating 
its potential as an antibiotic alternative [163]. Another L. 
lactis strain and L. casei were engineered to produce elafin, 
a natural protease inhibitor, for potential treatment of inflam-
matory bowel disease in humans [164].

However, it is important to note that the use of geneti-
cally modified microorganisms (GMOs) in food and feed 
additives, categories that include probiotics and postbiot-
ics, is subject to strict regulatory restrictions [165]. Due to 
these regulatory constraints, probiotic strain improvement 
efforts have primarily focused on non-GMO methods such as 
adaptive laboratory evolution (ALE) based on natural selec-
tion. For instance, Papadopoulou et al. [166] demonstrated 
that LAB originally isolated from seaweed, when subjected 
to ALE under saline conditions, developed enhanced salt 
tolerance and lactic acid production compared to their wild-
type ancestors. By the end of the evolutionary period, L. 
plantarum and Enterococcus faecium exhibited improved 
salt tolerance, with resistance increasing by 1.29-fold and 
1.75-fold, respectively, enabling growth in media contain-
ing over 71 g/L NaCl. Similarly, Han and colleagues [167] 
showed that ALE improved L. plantarum strains to tolerate 
up to 10% (w/v) NaCl, with some evolved isolates exhibit-
ing comparable growth at 8% (w/v) NaCl to that observed in 
media without extra salt. In another study, S. cerevisiae was 
adapted for increased salt tolerance via ALE [168].

In the case of plant-derived sugars, many probiotic strains 
naturally possess enzymes capable of degrading plant poly-
saccharides. For example, B. subtilis AMS6, isolated from 
traditionally fermented soybeans, exhibited cellulolytic 
activity [169], while L. plantarum RI11, from Malaysian 
food, was shown to produce extracellular cellulolytic and 
hemicellulolytic enzymes [170]. These capabilities can be 
particularly observed in mixed microbial systems such as 
the gut microbiome, which is well known for fiber “plant 
polysaccharide” degradation [171]. To further enhance per-
formance, ALE has been used to evolve Pediococcus aci-
dilactici ZY15 for improved utilization of lignocellulose-
derived sugars and inhibitory compounds formed during 
biomass pretreatment [172]. Additionally, combining ALE 
with direct metabolic engineering enabled the development 
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of P. acidilactici ZB220, capable of efficiently co-utilizing 
lignocellulose-derived sugars, leading to increased product 
yields [173, 174].

Strain improvement can also boost microbial tolerance to 
inhibitors generated during biomass pretreatment, such as 
furfural, HMF, acetic acid, and phenolics. These compounds 
often impair microbial growth and fermentation [175]. For 
example, C. tyrobutyricum was engineered for furfural 
resistance, resulting in increased butyrate production [176]. 
Similarly, genetically modified P. acidilactici showed sig-
nificantly improved tolerance to several common inhibi-
tors, including vanillin, syringaldehyde, and HMF [177]. 
In another case, B. coagulans GKN316, developed through 
atmospheric and room temperature plasma mutagenesis, 
exhibited strong resistance to a range of pretreatment-
derived inhibitors [178].

Enhancing thermotolerance in probiotic strains is another 
valuable improvement for saline/marine plant-based biore-
fineries. Greater heat resistance can facilitate simultaneous 
saccharification and fermentation (SSF), reducing process-
ing time, lowering enzyme demands, and improving strain 
survival during high-temperature steps like separation or 
drying [179–181]. For example, Prasad et al. [180] used 
ALE to develop thermotolerant L. bulgaricus, resulting 
in reduced enzyme usage and improved lactic acid yields 
during SSF. Additionally, ALE increased the viability of L. 
paracasei NFBC 338 by 18-fold compared to controls dur-
ing spray drying at outlet temperatures of 95–105 °C [179]. 
Strain improvement, whether through genetic engineering 
or adaptive evolution, is essential for enhancing robustness, 
substrate utilization, and inhibitor tolerance in saline/marine 
biomass biorefineries. Continued development and scale-up 
of these optimized strains will be key to improving process 
efficiency and enabling sustainable, economically viable 
production systems.

Future Outlook

Although high-salinity feedstocks can pose challenges for 
equipment maintenance and microbial conversions due to 
their inhibitory effects on microbial activity, they also serve 
as an effective contamination control mechanism, suppress-
ing the growth of undesirable microorganisms and maintain-
ing process stability [182]. Additionally, there is a growing 
trend toward utilizing saltwater for cultivation media, driven 
by concerns over freshwater depletion and cost efficiency, 
particularly in biofoundries with volumes of 1 million lit-
ers or more [183], overall fueling interest and investment in 
salt-involving processes.

Despite the promising potential of saline/marine plant-
based probiotic production, several research gaps remain. 
Future studies should focus on:

1) Screening and characterization: identifying and analyz-
ing a broader range of saline and marine plant species 
for their nutritional composition, prebiotic properties, 
and ability to support probiotic growth [45]

2) Optimal probiotic strains: selecting probiotic strains that 
efficiently utilize the nutrients in these plants and exhibit 
resilience to industrial processing conditions

3) Cost-effective bioconversion processes: developing 
innovative and economically viable bioconversion tech-
niques to extract and process bioactive compounds, fol-
lowing biorefinery principles [184, 185]

4) Life cycle assessments: conducting comprehensive 
evaluations to assess the environmental and economic 
sustainability of saline/marine plant-based probiotic pro-
duction [3]

5) Synergistic effects: investigating potential benefits of 
combining saline/marine plant extracts with other prebi-
otics or probiotics to enhance their efficacy [186]

6) Expanded applications: exploring novel applications of 
these probiotics in human and animal health beyond gut 
health, including immune support and metabolic health 
[187]

By addressing these gaps, the integration of saline and 
marine plants into probiotic production could become a sus-
tainable and economically viable strategy, contributing to 
both the nutraceutical industry and environmental conserva-
tion efforts.

Conclusion

In conclusion, the use of saline and marine feedstocks, such 
as seaweeds and halophytes, for the production of probiot-
ics and postbiotics, presents significant opportunities across 
economic, environmental, and industrial domains. Probiotic 
strains, particularly those from Lactobacillus genera, as well as 
yeast species like Saccharomyces and Candida, are generally 
salt-tolerant and have demonstrated the ability to thrive in agal 
and halophytic environments, making them ideal candidates 
for fermentation in diverse conditions. These strains not only 
exhibit remarkable adaptability but are also known for their 
ability to produce bioactive compounds, such as antioxidants, 
phenolics, and antimicrobial agents, which can enhance the 
overall health benefits of fermented products and have prom-
ising applications in nutraceuticals and functional foods. 
Moreover, the use of mixed bacterial and fungal cultures in 
fermentation can enhance the diversity and robustness of the 
microbial ecosystem, improving the stability and functionality 
of the final product.

It has been shown that the inherent presence of antimi-
crobial compounds in algal and halophytic species further 
amplifies the growth of probiotics while providing effective 
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pathogen and contamination control during the fermentation 
process, thus reducing the need for expensive sterilization 
steps and minimizing the use of preservatives. This synergy 
creates a safer and more controlled fermentation environment, 
leading to products with improved nutritional value, enhanced 
shelf life, and greater consumer appeal.

From the perspective of circular economy, utilizing saline 
and marine plants as substrates for probiotic production could 
reduce media costs and environmental impact, as these plants 
do not require arable land or freshwater. The cultivation of sea-
weed and halophytes also contributes to carbon sequestration, 
aiding in climate change mitigation and ecosystem restora-
tion. Furthermore, the development of integrated biorefinery 
facilities close to coastal regions could drive down operational 
costs, enhancing the economic feasibility of these processes. 
The production of value-added byproducts, such as plant bio-
active extracts, could further bolster the profitability of saline 
plant-based probiotic systems. While challenges related to 
optimizing fermentation conditions and improving scalability 
remain, the potential for marine and saline-based biorefineries 
to create sustainable, cost-effective probiotic and postbiotic 
products offers a promising pathway for both industrial innova-
tion and environmental sustainability in the growing probiotic 
and nutraceutical market.
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