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ABSTRACT

Increasing consideration of welfare in aquaculture has prompted interest in non-invasive methods of monitoring that avoid
unnecessary stress and handling. Machine vision (MV) provides a potential solution to these needs, as it can be used for
non-invasive monitoring of animal health and welfare in real-time. We examined the practical applications of MV for welfare
monitoring in aquaculture, the hardware and algorithms used for automated data collection, and the main challenges and
solutions for data processing and analysis. The most common application of MV has been the estimation of size-related metrics
(growth, biomass) in fish, but key aspects of welfare, such as monitoring of parasites and disease or detection of stress-related
behaviours, are lagging behind. Numerous camera setups have been used, ranging from single to stereoscopic cameras and from
emersed to submerged cameras, but these have often been used under optimal conditions that may not always reflect those
prevalent in industry (high densities, low visibility), likely overestimating performance. Object detection algorithms, such as
YOLO, have been the approach of choice for most MV applications in aquaculture, but our review has identified an increasing
number of alternatives that can help circumvent some of the challenges posed by high densities and poor lighting typical of
commercial farms. MV has the potential to transform welfare monitoring in aquaculture, but there are still important challenges
that need to be overcome before it can become mainstream, namely the ability to detect ectoparasites and diseases, identify
abnormal behaviours, and work across taxa, particularly in crustaceans.

1 | Introduction Patifio et al. 2014). The aquaculture sector has seen exponential

growth in recent years, which has resulted in increased demands

Animal welfare refers to ‘the physical and mental state of an
animal in relation to the conditions in which it lives and dies’, a
definition that typically considers five domains: nutrition, phys-
ical environment, health, behavioural interactions and mental
state (Barreto et al. 2022). One of the difficulties in measuring
the welfare of aquatic organisms is that many current methods,
especially those that involve monitoring individuals, are time
consuming, invasive and stressful for the organisms (Lépez-

by legislators and the public for better welfare standards (Council
of Europe 2006; Browman et al. 2019) and ethically produced
food (Sebastiani, Montagnini, and Dalli 2013), especially in
northern Europe (Bacher 2015). This increased pressure and
the official acknowledgement of the sentience of both fish
and decapod crustaceans (UK Public General Acts 2022) has
created a need for novel methods of monitoring all five welfare
domains.
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BOX1 | Key concepts in machine vision

An artificial neural network (ANN) is a non-linear mathe-
matical function that takes a set of inputs and transforms
them into an output depending on a set of parameters
called weights, which are determined by training the network
(Bishop 1994). Neural networks are made up of many artificial
neurons, each processing multiple inputs and generating
outputs. The simplest neural network is known as a single-
layer perceptron (SLP) or a neuron, which takes multiple
inputs, produces input weights, sums them and then passes
the sum through a non-linear activation function to produce
one or more outputs. However, the use of SLPs is limited
as they can only produce binary outputs. To overcome this
shortcoming, multi-layer perceptrons (MLPs) were developed,
consisting of an input layer, an output layer and one or more
hidden layers made of multiple neurons, with each layer
being fully connected to the next one. MLPs can handle non-
linear relationships. Both SLPs and MLPs are feed-forward
networks; that is, data goes in only one direction, from the
input nodes to the output nodes. Machine learning uses
backpropagation (Rumelhart, Hinton, and Williams 1986), so
that data is fed back into the network and the weights are
updated each time the data passes through the network, until
the error between the predicted and actual value cannot be
further minimised. This is how neural networks are trained.
Convolutional neural networks (CNNs) are a form of ANNs
specifically used for machine vision due to their ability to
recognise patterns in video and images (Patel and Patel 2020).
More specifically, a CNN has one or more convolutional layers
which act as feature extractors (Z. Li, Liu, et al. 2022). A
convolutional layer breaks an image into overlapping tiles
by passing a window (of a chosen size) over the image.
This creates feature maps—the output of a CNN. After this,
the feature maps go through pooling (usually either maxi
pooling or average pooling), which allows the network to
reduce the dimensions of the data while still allowing the
network to extract important features. Not all neurons in the
convolutional layers are fully connected, and this helps speed
up convergence (Z. Li, Liu, et al. 2022). Different forms of CNN
are used for machine vision tasks, many of which are publicly
available—such as YOLO (Jiang et al. 2021), which should
help increase uptake of machine vision by the aquaculture
industry.

A common way to monitor welfare is through the use of opera-
tional welfare indicators (OWIs), that is, practical and easy-to-use
metrics of welfare that can be used in a farm setting (Gutierrez
Rabadan et al. 2021). However, monitoring of many OWIs (such
as measuring growth or physical condition) often requires the
removal of individuals from the water. Aquaculture species
differ in their ability to withstand capture and handling, but air
exposure is stressful to most farmed fish (Arends et al. 1999; Cook
et al. 2015) and crustaceans (Stoner 2012) and negatively impacts
their welfare (Barreto et al. 2022; Rey Planellas and Garcia de
Leaniz 2024). Given that most farmed aquatic species—including
all fish, decapod crustaceans and cephalopod molluscs—are
now considered sentient animals (Birch et al. 2021), the use of
MV to reduce handling stress and monitor welfare has ethical

implications for the development of more sustainable, profitable
and efficient aquaculture (O’Donncha and Grant 2019; Ashraf
Rather et al. 2024).

Artificial intelligence (AI), specifically machine vision (MV),
provides a powerful tool for non-invasive, underwater monitoring
of aquatic organisms at the farm that can eliminate air exposure
and handling, reducing stress, improving growth and welfare
(Martinez-Vazquez et al. 2019). The use of Al has increased in
recent years in a wide range of industries, including manufactur-
ing (L. Zhou, Zhang, and Konz 2023), the healthcare sector (D. Lee
and Yoon 2021) and the aquaculture industry (C.-C. Chang, Wang,
et al. 2021; P. Lee 2000), reflecting improvements in software and
the hardware required to run increasingly demanding computa-
tional tasks (Abu Talib et al. 2021). Central to the development of
automatic object recognition is the use of machine learning (ML),
a common type of Al that can perform complex tasks without
explicit programming and is capable of self-improvement through
data analysis (Jordan and Mitchell 2015; Janiesch, Zschech, and
Heinrich 2021).

It has been argued that the use of artificial neural networks,
a type of ML inspired by the working and complexities of the
human brain (Zou, Han, and So 2008) (Box 1), has paved the
way for the fourth industrial revolution, where improvements
in efficiency will be achieved through ‘smart manufacturing’
(Rai et al. 2021) and also through precision food production
(Antonucci and Costa 2020; Fore et al. 2018). MV (the successor
of computer vision) uses ML to identify features such as textures,
shapes and distances from images or videos (Fernandes et al.
2020) and was first explored in the early 1960s (Shapiro 2020),
although classical computer vision did not originally use ML. MV
has exploded in functionality through the use of ML and, more
recently, deep learning using layered artificial neural networks
and is already used in many disparate, real-world applications,
ranging from the detection of cancer cells (W. He et al. 2022;
Pacal et al. 2020) to the operation of self-driving cars (Badue et al.
2021). However, applications in aquaculture are relatively recent
and have largely been restricted to the estimation of body size
and biomass (Figure 1), generally under laboratory or optimal
conditions, which can vary greatly from industry settings, where
visibility can be poor and densities high.

MYV can reduce manual labour and processing time (Wu et al.
2022; P. Lee 2000) and allows for real-time monitoring (Mandal
and Ghosh 2024), which is essential for the assessment of animal
health (Vo et al. 2021; D. Li, Wang, et al. 2022) and the detection
of changes in behaviour (Barbedo 2022). Recent improvements
in hardware for computer vision (Pang 2022) have made it more
accessible to industry, and aquaculture is predicted to become
one of the most important beneficiaries of such technological
improvements. The use of MV in the aquaculture sector can
increase efficiency and sustainability through the automation
of tasks such as food delivery, water quality monitoring and
welfare assessment in a move towards ‘smart aquaculture’—the
integration of smart devices and Al for monitoring and automatic
decision making (Vo et al. 2021). This will aid the industry in
meeting increasing global demands for fish, a sector which is
projected to account for 55% of all fish production worldwide
by 2032 (OECD 2023). As there are now commercially available
MYV systems for aquaculture (Korus et al. 2024), the potential
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FIGURE 1 | Applications of machine vision for welfare monitoring in aquaculture include pattern recognition(Cisar et al. 2021), detection of
wounds, disease and fin damage (Gupta et al. 2022), detection of ectoparasites (Kim, Choe, and Zhang 2023), count and population estimates (S. Zhang,
Yang, et al. 2020), behavioural monitoring (J. Huang et al. 2022) and size and biomass estimation (Bravata et al. 2020).

economic benefits will be seen in the near future. It is also possible
for MV to be integrated with other non-invasive monitoring
techniques, including acoustic telemetry (Puig-Pons et al. 2019).
Yet, despite its many potential benefits, there are no MV standards
for data collection or algorithm design, which may be hampering
progress. For example, although there are numerous protocols
for data collection and camera setups, some of which require
specialist knowledge (Saberioon et al. 2017), there is little practical
guidance on which MV setups work best under commercial
conditions, how to increase their accuracy or how they can be
used for welfare monitoring. Here, we review the practical appli-
cations of MV for welfare monitoring in aquaculture, introduce

the techniques, algorithms, and equipment used, and discuss the
main challenges and limitations.

2 | Methods

To build the study corpus on the use of MV in aquaculture, we
used the PRISMA protocol (Page et al. 2021) to search the Web of
Science (all databases) and Google Scholar. For Google Scholar,
the first 200 papers were considered, and all searches were carried
out in an incognito window to increase reproducibility and reduce
biases from previous searches. The timeframe was 01 January
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2000-31 December 2023. The search terms we used were: ‘Al OR
“Artificial Intelligence” OR “Machine Learning” OR “machine
vision” OR “computer vision” OR contactless OR nonintrusive
AND weigh* OR biomass OR mass OR BMI AND Aquaculture
OR “fish farm*” AND Welfare OR “welfare monitoring” AND
fish OR prawn* OR shrimp’, ‘Aquaculture OR “fish farm*”
AND Welfare OR “Welfare monitoring” AND fish OR prawn*
OR shrimp AND contactless OR nonintrusive AND weigh* OR
biomass OR mass OR BMI”, “Aquaculture OR “fish farm*” AND
Welfare OR “Welfare monitoring” AND fish OR prawn* OR
shrimp AND weigh* OR biomass OR mass OR BMTI’, ‘Aquaculture
OR “fish farm*” AND Welfare OR “Welfare monitoring” AND
contactless OR nonintrusive AND weigh* OR biomass OR mass
OR BMT, ‘Aquaculture OR “fish farm*” AND Welfare OR “Wel-
fare monitoring” AND weigh* OR biomass OR mass OR BMT,
‘Aquaculture OR “fish farm*” AND fish OR prawn* OR shrimp
AND contactless OR nonintrusive AND weigh* OR biomass OR
mass OR BMT’, ‘Aquaculture OR “fish farm*” AND contactless
OR nonintrusive AND weigh* OR biomass OR mass OR BMT,
‘Aquaculture OR “fish farm*” AND weigh* OR biomass OR mass
OR BMT, ‘Al OR “Artificial Intelligence” OR “Machine Learning”
OR “machine vision” OR “computer vision” OR contactless OR
nonintrusive AND weigh* OR biomass OR mass OR BMI’. The
inclusion criteria included publications that (1) were written
in English; (2) used MV (from video or images from cameras)
on animals, not on the environment; (3) that specified the
trait(s) being tracked or measured; (4) that included details of
the software used or listed the techniques used to create the
Al/algorithm and the metrics used to assess performance; (5)
that were applied or could potentially be applied to aquaculture;
(6) that were available online and open access and (7) that were
primary literature (i.e., we excluded reviews). Of over 1.2 million
potential studies, +74,000 were screened through a keyword
search using the refine search function in Web of Science on
the studies saved from the initial searches, and 278 were deemed
eligible (Figure 2).

3 | Results and Discussion
3.1 | Usesof MV in Aquaculture

Of 278 eligible studies, 79 publications (28%) were identified that
met the PRISMA inclusion criteria, 78% of which were published
over the period 2021-2023; Figure 3). The sharp increase in MV
studies is likely caused by improvements in graphics processing
units and AI chips over the last decade (Momose, Kaneko,
and Asai 2020) and integrated circuits developed specifically by
Nvidia, Google and Intel to run deep neural networks (Pang 2022).

Size estimation was the most common application of MV in
aquaculture (44%; Table 1), likely due to the direct commercial
importance of monitoring growth performance and the need
to detect stunted individuals resulting from stress, malnutrition
(Barton, Schreck, and Barton 1987) or loss of water quality
(Abdel-Tawwab et al. 2019). Size estimation is paramount in fish
farming, and this has prompted the development of cameras
and software for biomass estimation, mainly in salmon farm-
ing. Some examples include ReelBiomass (https://www.reeldata.
ai/reelbiomass) and BiomassPro (https://www.innovasea.com/
aquaculture-intelligence/biomass-estimation/). In comparison,

we only found one study that used MV to estimate body mass
in shrimp (Setiawan, Hadiyanto, and Widodo 2022), despite the
fact that crustaceans are the most commonly farmed aquatic
organisms worldwide (FAO 2022).

Most of the size-related studies used computer vision to estimate
fish length, from which body mass was, in some cases, calculated
from length-weight relationship (Nehemia et al. 2012; Jones,
Petrell, and Pauly 1999). However, this approach assumes a
constant fish length-weight ratio (isometric growth) and ignores
seasonal growth stanzas, which can introduce errors in biomass
estimates (Lorenzen 2016). An alternative approach would be to
use MV to estimate body mass from changes in body size ratios
(Stevenson and Woods 2006), and this an area that merits further
investigation given the close relationship between body condition
and fish welfare (Gutierrez Rabadan et al. 2021; Rey Planellas and
Garcia de Leaniz 2024).

The second most common use of MV in aquaculture was
behavioural monitoring (11%), although this mostly addressed
the monitoring of feeding activity (Feng et al. 2022; Z. Liu et al.
2014; G. Wang et al. 2021; Yang, Shi, and Wang 2022). To our
knowledge, algorithms have not yet been developed to quantify
complex individual behaviours necessary for behaviour-based
welfare monitoring (Rey Planellas and Garcia de Leaniz 2024),
and this is an area where research is also needed. Some studies
have recently applied pose estimation (B. Lin et al. 2021; J.-H.
Wang et al. 2020) as a first step to characterise behaviours, as
used in terrestrial livestock, where behaviours are inferred from
the spatial position within an enclosure (Lei et al. 2022; Guo, He,
and Chai 2020). In aquaculture, a similar approach could be used
in tanks or sea cages enriched with ‘furniture’, such as hides or
designated feeding stations.

The remaining studies used MV for organism detection (10%) or
species identification (5%), which is important under polyculture,
where different species are reared together and there is a need to
monitor their welfare or behaviours separately. Only a handful of
publications have applied MV for individual identification (4%).
While individual identification might be useful for small-scale
studies, it may not be feasible—or even relevant—in large net
pens, where tens of thousands of individuals may be present.
The difference in visibility between laboratory and commercial
conditions is also an important consideration, as poor lighting
and increased turbidity may make it more challenging to use MV
in farm settings. Most of the studies that used MV for organism
identification used pre-existing datasets or pre-existing images
(75%) instead of creating their own videos or images. While not all
of the images from these datasets were obtained in an aquaculture
setting, this approach could still be applied to organisms in
aquaculture, especially those in sea cages, as many datasets were
taken from the open ocean including Fish4knowledge (Fisher
et al. 2016), Deepfish (https://alzayats.github.io/DeepFish/) and
IOCAS (Zhu et al. 2022) datasets. However, the extent to which
models trained on images of organisms in the wild can be
generalised effectively to industrial tank settings is uncertain. In
this sense, there is a need for videos and image datasets from
aquaculture or aquaculture-like settings that can be used to train
algorithms destined for deployment in the industry. This would
ease the transition from training to deployment, as there will
be a higher similarity between training and testing data sets,
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https://www.innovasea.com/aquaculture-intelligence/biomass-estimation/
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TABLE 1 | Summary of studies using machine vision (MV) in aquaculture that met the systematic review criteria.
Organism Algorithm
Author Taxon MV use CNN Camera type state performance
Abinaya, Fish Biomass YOLOv4 Single camera Out of 91.52% accuracy
Susan, and (segment water—dead (validation for biomass);
Sidharthan detection), deep 0.941 mAP YOLO, 95.4%
(2022) learning CVFs
network
M. S. Ahmed, Fish—dataset Disease CNN combined Single camera Dead 91.42% (without
Aurpa, and with SVM augmentation), 94.12%
Azad (2022) (with augmentation)
Al Duhayyim Fish—dataset Fish mask R-CNN Single In Accuracy: blurred: 98%,
et al. (2022) (CapsNet camera—in  water—alive  crowded: 97%, F score:
Model) water blurred: 96%, Crowded:
97%
Al-Jubouri Fish Length Single In Average estimation error
et al. (2017) camera—out of water—alive of approximately 1%
water
Atienza- Fish Individual ID Single In sea cage, Up to 90% success rate
Vanacloig et al. camera—in alive
(2016) water
Banno et al. Fish—multiple Species and YOLOv4 Single In False positive and false
(2022) species counting (wild camera—in  water—alive negative rates < 7%
fish water
abundance
monitoring)
Bekkozhayeva  Fish—multiple Individual ID Single camera Out of SB: ST:100%-91.66%, LT:
and Cisar species water—alive ~ 100%-40.62% | CC: ST:
(2022) 100%, LT: 80.64%-29.03%
Boer et al. Multiple Species ID and YOLOv5 Stereo In Mean detection accuracy:
(2023) classes—dataset counting vision—in water—alive 92.4%, mAP: 94.8%, F1
water score: 93%
Bonofiglio et al. Fish Detection and YOLOv5 Single In 92% Average precision
(2022) classification, camera—in water—alive  (AP) on 730 test images,
then water and a fivefold
abundance cross-validation AP of 93%
estimation (£3.7%)
Bravata et al. Fish—dataset Size DCNN Single Fed througha Mean percentage errors:
(2020) camera—6in  slide—alive 5.5%-7.6%
succession
C.C. Chang Fish—multiple Species ID YOLOV4, mask Stereo In tank and True positive rate: A
et al. (2022) species R-CNN vision—in sea cage, alive (tank): 85%, B (cage): 90%,
water C (tank): 75%
C.-H. Chang, Fish—multiple Length and Faster R-CNN Stereo Intankand  Estimated error—3.84%
Weng, et al. species weight vision—in  sea cage, alive
(2021) water
Cisar et al. Fish Individual ID CNN Single Both in the 100% accuracy
(2021) camera— tank and out
outside tank
(side)
Costa et al. Fish Multiple Single camera Dead Regression efficiency
(2013) (r=0.98), discrimination

efficiency for sex and
malformation estimation
was equal to 82% and 88%

(Continues)
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TABLE 1 | (Continued)
Organism Algorithm
Author Taxon MV use CNN Camera type state performance
De Vos et al. Echinoderm— Dimension Single camera Out of Mean coefficient of
(2023) multiple measurements water—alive variation: 1.55%
species
Deng et al. Fish—multiple Length ResNeXt50, Stereo In Bounding box: mAP: 0.87,
(2022) species Keypoints vision—in tank—alive key point: mAP: 0.99
R-CNN water
Feng et al. Fish Feeding 3D Single In Accuracy 93%
(2022) intensity ResNet-GloRe camera—above tank—alive
water
Gong et al. Fish—dataset Species ID Single camera Multiple Accuracy: 98% (high res),
(2023) 94% (low res) | F1: 95
(high), 94 (low)
Gupta et al. Fish Wound and  VGG-19 (based Single In 91% (lice), 93% (wounds)
(2022) lice detection ~ on), CNN (15 camera—in tank—alive
layers) water
Hao, Yin, and Fish Mass Single camera Out of R?:0.991, RMSE: 7.10 g,
Li (2022) water—alive MAE: 5.36 g, MaxRE:
8.46%
Hong Khai Crustaceans Density Resnet101, mask Single In Up to 97.5%
et al. (2022) R-CNN camera—above tank—alive
water
Y. Huang and Fish—dataset Disease Multi-layer Single In 94.28% of accuracy,
Khabusi (2023) fusion attention = camera—in water—alive precision of 92.67%, recall
CNN-OSELM water of 92.17% and 92.42%
network
J. Huang et al. Fish Behaviour Graph Single In Classification accuracy up
(2022) convolution = camera—above tank—alive t0 97.3%
network water
Jang et al. Fish Abnormal Darknet-53 Single In 98.10%
(2022) behaviour backbone, camera—above tank—alive
YOLOV3 water
Da Silva Fish Mass InceptionV3,  Single camera Fedthrougha  Accuracy:J48: 58.2%,
Oliveira Junior ResNet50, slide—alive ResNet50: 67.08%
et al. (2021) VGG16/19,
Xception, J48
Kim, Choe, and Bivalves— Parasite Microsoft Azure Single cameras Out of water  Oysters: mAP: 71.5, 69.6,
Zhang (2023) multiple Custom Vision in photo booth 16.5, 5.1% | Scallops: mAP:
species X3 angles 43.6, 34.5%
D. Lee et al. Echinoderm Weight Single In RMSE: 1.434 g, R?: 0.999
(2014) camera— tank—alive
outside
tank
W. Lietal. Fish—dataset Counting MSENet, Single In MAE: 3.33
(2023) MCNN camera—above tank—alive
tank
(Continues)
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TABLE 1 | (Continued)

Organism Algorithm
Author Taxon MV use CNN Camera type state performance
B. Linetal. Fish Fish pose Rotated-YOLO Single In Precision 90.61%, F1 score:
(2021) 5, R-CenterNet camera— tank—alive 90%
outside tank
(side)
Lines et al. Fish Mass Stereo In sea cage, Mean error: mass: 18%,
(2001) vision—in alive linear dimensions < 10%
water
Z. Liu et al. Fish Feeding Single In R*:0.9195
(2014) camera—above tank—alive
water
Lopez-Tejeida Fish Weight Single In Average accuracy of 92%,
et al. (2023) camera—above tank—alive true positive rate equal to
water ans 95%, false positive rate
outside tank equal to 12%
(side)
Marrable et al. Fish—dataset Length YOLOVS small Single In Precision: 77.4%, Recall:
(2023) camera—in  water—alive 70%, F1: 73.51%
water
Martinez-de Fish Weight Stereo In < 4% error above, < 5% in
Dios, Serna, vision—in and tank—alive water (weight)
and Ollero above water
(2003)
Martinez- Fish Biomass InceptionV4, Single In R?:0.9999 CTRL, 0.9997
Vazquez et al. novel CNN camera—above tank—alive EXP
(2019) water
Muiioz- Fish Size Stereo Inseacage, No significant difference
Benavent et al. vision—in alive between measurements
(2018) water and ground truth
Mufioz- Fish Size YOLOVS, mask Stereo In No significant difference
Benavent et al. R-CNN, faster vision—in tank—alive = between measurements
(2022) R-CNN water and ground truth
Nian et al. Fish—multiple Fat Online MRI machine Out of 89.13% + 5.32%,
(2020) species sequential water—alive 91.43% =+ 6.68% and
extreme 93.08% =+ 6.57%
learning
machine
Odone, Trucco, Fish Weight Single Slide—dead Absolute percentage
and Verri camera—slide error: 3%, Standard
(2001) deviation: 2%
Pache et al. Fish Biomass ResNet-152, Single Fed through a DBN: R?: 0.7
(2022) Xception, camera—above slide—alive
Inception, and water
DenseNet-201,
Deep neural
networks, deep
belief networks,
CNN
(Continues)
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TABLE 1 | (Continued)
Organism Algorithm
Author Taxon MV use CNN Camera type state performance
Palmer et al. Fish Length Mask RCNN Single camera Dead Mean average
(2022) precision = 79.8%,
dolphinfish-level
precision = 96.06%,
dolphinfish-level
recall = 90.54%, F1
score = 93.21% and model
accuracy = 86.10%
Petrellis (2021) Fish—dataset Size Mask R-CNN  Pair of cameras In Error: 1.9%-13.2%,
(coco water—alive
pre-trained)
Pinkiewicz, Fish Behaviour Single In sea cage, 99.3% accuracy
Purser, and camera—in alive
Williams (2011) water
Puig-Pons et al. Fish Biomass Stereo Inseacage, No significant difference
(2019) vision—in alive between measurements
water and ground truth
Qiao et al. Echinoderm— Organism Single In lake Accuracy: 98.55%
(2019) multiple camera—in farm—alive
species water
Ranjan et al. Fish Mortality YOLOV7 Single In Precision: 93.4%, mAP:
(2023b) camera—in tank—alive 0.89
water
Ranjan et al. Fish Fish YOLOVS5 (Object Single In Gpro with augmentation:
(2023a) detection camera—in tank—alive mAP: YOLO: 82.9%,
module), Faster water (four diff FRCNN: 79.7%
R-CNN cameras)
Rico-Diazetal. Fish—multiple Fish and Feed-forward Stereo In Using both
(2020) species weight ANN vision—in tank—alive methods—accuracy of
water 74%
Risholm et al. Fish—multiple Length DBSAN 3D camera—in Intankand ‘Length estimation errors
(2022) species algorithm water sea cage, alive in the order of 1% of
manual-measured fish
length’
Saberioon and Fish Mass ResNet, Single In Highest prediction: RF:
Cisar (2018) MRCNN camera—above tank—alive R?:0.84, RMSE = 0.16
water
Salhaoui et al. Bivalves Population Single In Precision: 0.93-0.89,
(2020) size camera—in water—alive recall: 0.78-0.67, IoU:
water 0.83-0.68
Setiawan, Crustaceans Weight BPNN Single In RMSE: 0.05, MAE: 0.04,
Hadiyanto, and camera—in tank—alive R%*:0.96
Widodo (2022) water
Shi et al. (2022) Fish Mass Stereo In Measurement success
vision—in tank—alive rate: orthogonal: 96.3%,
water < 45°:77.7%, > 45°: 67.3%
Silva, Aires, Fish—multiple Length Stereo In Error < 1%
and Rodrigues species vision—in water—alive
(2023) water
(Continues)
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TABLE 1 | (Continued)
Organism Algorithm
Author Taxon MV use CNN Camera type state performance
Sun et al. (2018)  Fish—dataset Species ID AlexNet, Single In RGB-Alex-SVM: 99.68%
GoogLeNet, camera—in water—alive precision
OxfordNet water
(VGG-16), ‘RGB-
Alex-SVM’,
Deep CNN,
Deep uw-CNN
Tengtrairat Fish Weight ResNet Single In MAE: 42.54 g, R?: 0.70,
et al. (2022) backbone, Mask  camera—in tank—alive  average weight error of
R-CNN water 30.30 £23.09 g
Tillett, Fish Mass Stereo In Average error: 5%
Mcfarlane, and vision—in tank—alive
Lines (2000) water
Tonachella Fish Length, weight YOLOV4 (for Stereo In seacage, Mean difference: length:
et al. (2022) object vision—in alive 3%, weight: 3.6%
detection), water
Resnet101 (CNN
used)
Ubina et al. Fish—multiple Length Resnet101, video Stereo In tank and Accuracy: 90% (cage),
(2022) species interpolation vision—in  sea cage, alive tank: 92%
CNN, semantic water
segmentation
CNN, MASK
R-CNN
Ubina et al. Fish—multiple Multiple YOLOV4, Stereo In sea cage, 3.44% error
(2023) species Mask-RCNN vision—in alive
water
van Essen etal.  Fish—multiple Fish ID, YOLOv3deep  Single camera Dead Weighted counting error
(2021) species counting neural network of 20%
Viazzi et al. Fish Mass Single camera Out of Estimated mean relative
(2015) water—alive  error was 6% + 3% and
coefficient of
determination of 0.99
Wang et al. Fish Abnormal Faster R-CNN Single In Faster-rcnn:
(2020) behaviour, camera—in tank—alive Accuracy ~ 92.8 %, F1
posture water score = 0.81,
classification precision =~ 84%,
sensitivity ~ 80%, and
mAP (mean average
precision) = 49.80%
G. Wang et al. Fish Behaviour, FLowNet2, 3D Single In Average accuracy: 95.79%
(2021) schooling CNN camera—above tank—alive
water
Wen et al. Multiple Organism YOLOv5s-CA Stereo In mAP: 80.9%
(2023) classes—dataset camera—in  water—alive
water
Xiao, Li, and Echinoderm— Organism YOLOVS5, PANet Single In mAP: 0.90
Zhao (2023) multiple camera—in water—alive
species water
Xu et al. (2023) Echinoderm Disease DT-YOLOvV5 Single In precision: 99.43%, recall:
camera—above tank—alive 98.91%, APs.q5: 84.89%
water
(Continues)
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TABLE 1 | (Continued)
Organism Algorithm
Author Taxon MV use CNN Camera type state performance
Yang, Shi, and Fish Feeding YOLOv4-Tiny- Single In Precision rate, recall rate,
Wang (2022) ECA camera-3 pov  pond—alive and F1 score angle
(2 side, 1 feeding: 96.23%, 95.92%,
bottom) 0.96. vertical feeding:
95.89%, 96.44%, 0.96
Yu Fish Weight Binocular In Accuracy: 94.43%,
et&amp;#x000A0;al. vision—in tank—alive  precision: 90.21%, Recall:
(2022) water 98.54%, F1 score: 94.04%
G.Yuetal. Fish—multiple Disease MobileNet3- Single camera  Inseacage  Accuracy: 98.98%, Recall:
(2023) species GELU-YOLOv4 and out of 98.65, mAP: 99.64%
(based on water
YOLOV4),
R-CNN
. Zhang, Yang, Fish Population Multi-column Single Inseacage, MAE: 4.29, RMSE: 5.57,
et al. (2020) size CNN camera—in alive accuracy: 95.06
water
Zhang, Li, Fish Population BPNN Single In Mean absolute error of
et&amp;#x000A0;al. size camera—above tank—alive  0.2985, root mean square
(2020) tank error of 0.6105 and a
coefficient of
determination of 0.9607
Y. Z. Zhang Fish—dataset Fish ID Deep neural Single In Recognition: 98%
et al. (2021) classification network camera—in  water—alive
water
Zhang, Wu, Fish—dataset ~ Fish detection = Dual pooling- Single In Mmean IoU: Deepfish:
and Bao (2022) segmentation aggregated camera—in  water—alive 91.08%, SUIM: 85.39%
Attention water
Network
L. Zhang et al. Crustaceans Population Light-YOLOv4 Single In Mean average
(2022) size (YOLOv3 for camera—above tank—alive precision—93.16%
target detection) tank
Zhang Fish Biomass DL-YOLO Stereo In Single factor model: MRE:
et&amp;#x000A0;al. (based on vision—in tank—alive 2.87% (between
(2024) YOLOvV5n) water true + estimated weights),
no significant difference
either | multi factor:
length weight MRE:
8.86%, height-weight:
7.41%
.Zhou et al. Fish Behaviour Single In tank -alive Accuracy: 98%
(2018) camera—above
water
Zhou Fish Length Stereo In Relative % error: 0.9%
et&amp;#x000A0;al. vision—above  tank—alive
(2023) tank
Zhu et al. Fish—dataset Organism YOLOV4- Single In 300 epochs: mAP5: 0.856,
(2022) embedding camera—in  water—alive precision: 0.86, recall: 0.82
water
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FIGURE 2 | Selection criteria used for the systematic review following the PRISMA protocol.
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FIGURE 3 | Temporal trend in the use of MV for different tasks in aquaculture (N = 79).

minimising the time needed to retrain to new circumstances.
Another advantage of using similar training and testing data
sets is that it will allow easier comparison of the performance
of different algorithms and techniques (D. Li, Wang, et al.
2022).

Health monitoring accounts for 10% of MV studies, with only
three studies looking at disease detection (M. S. Ahmed, Aurpa,
and Azad 2022; Xu et al. 2023; G. Yu et al. 2023) and only one

study used MV to detect sea lice in salmon (Gupta et al. 2022).
This is an urgent area of research due to the devastating effects
that diseases and parasites have on aquaculture (Lafferty et al.
2015; Costello 2009), the potential for outbreaks to spread to wild
populations (Bouwmeester et al. 2021), and the severe impacts
on welfare. An early warning system able to detect the onset
of disease in real time would be highly beneficial for the rapid
isolation or treatment of affected individuals and for minimising
disease impacts on welfare.
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FIGURE 4 | Distribution of MV studies in aquaculture by taxa
(N=179).

A few studies used MV to estimate population size (8%). This is
also an area in need of research, especially in sea cages, where
monitoring of losses due to escapes, predation, or disease is
challenging and could indicate poor welfare (Duk et al. 2017).
This application would be less useful in closed systems, where
escapes are typically not an issue, but there is still a risk of
cannibalism, especially in decapod crustaceans (Romano and
Zeng 2017), where MV can also be used for larval counting (Hong
Khai et al. 2022).

The development of MV approaches that combine different algo-
rithms presents interesting opportunities for monitoring complex
welfare-related traits, although currently, only 8% of papers use
MYV for multiple uses. Two potential applications of a multiple-
algorithm approach would be to combine species identification
with a body condition or with size estimation in polyculture
(e.g., when cleaner fish are used in salmon farming; Powell et al.
2018), or to combine size estimation with feeding activity or
health status in monoculture. Combining algorithms that capture
different traits may allow the calculation of more meaningful
welfare scores and provide a more holistic approach to measuring
welfare instead of relying on single measures (Rey Planellas and
Garcia de Leaniz 2024).

3.2 | Organisms Monitored Through MV in
Aquaculture

The majority of MV studies in aquaculture have focussed on fish
(85%), followed by echinoderms (6.3%) and crustaceans (3.8%;
Figure 4). The paucity of MV studies on crustaceans represents
an important knowledge gap because shrimp are the most widely
farmed aquatic organisms in the world (Miao and Wang 2020) and
there is increased pressure to monitor welfare in crustaceans (UK
Public General Acts 2022).

Some MV studies (21.5%) report monitoring several species simul-
taneously, suggesting that some algorithms are generic enough
to be able to perform the same functions across taxa, which
could reduce costs to farms and increase uptake by industry.
For example, the same algorithm can be used to estimate body
size in multiple species with a similar fusiform body shape

with less than 10% error (C.-C. Chang, Wang, et al. 2021; Deng
et al. 2022; Risholm et al. 2022; Ubina et al. 2022; Rico-Diaz
et al. 2020; Silva, Aires, and Rodrigues 2023). For species with
more unique body shapes, such as the round body shape of
lumpfish, combining species identification with size estimation
in polyculture would ensure that the correct parameters of the
length-weight relationship are applied (Gutierrez Rabadan et al.
2021), depending on the species.

3.3 | Possibilities Offered by Publicly Available
Image Databases

The use of publicly available image databases, for example,
Fish4Knowledge (Fisher et al. 2016), was relatively common
(17.7%) in MV applications, particularly for species identification
and organism detection. The advantage of using existing image
databases is that it can simplify and reduce the time required
for obtaining a training dataset, which can be time-consuming,
and determines in part algorithm performance (Mikotajczyk
and Grochowski 2018; Benos et al. 2021). The Fish4knowledge
database has1TB of publicly available fish images and has already
been used in several MV studies (Y. Z. Zhang et al. 2021; Sun
et al. 2018; Al Duhayyim et al. 2022). Although Fish4knowledge
currently consists of images of wild fish, a similar dataset
could be developed for farmed species for use in aquaculture,
reducing in this way the need for data augmentation, that is,
the rotation, cropping and colour correction of training images.
Data augmentation could also be used to overcome poor visibility
in turbid waters (Tengtrairat et al. 2022). The lack of publicly
available data is a common problem found across industries
that use MV, including medicine, manufacturing and agriculture
(Abd Aziz et al. 2020), as it is the need for expert knowledge
for image annotation, although the latter can be overcome to
some extent through transfer learning and unsupervised training
(Smith, Smith, and Hansen 2021).

3.4 | Overview of Hardware

An essential part of the MV system is the camera. Two
types of cameras are used most often in MV applications:
single cameras and stereoscopic cameras. Stereoscopic vision
(used in 24% of studies) is achieved by combining simulta-
neous images from two cameras or lenses to create a 3D
image, like human vision (Chan et al. 2018). Most of the
studies that used stereoscopic vision were for size estimation
(44% of size estimation studies). Although stereoscopic cam-
eras, such as those used in ReelBiomass (https://www.reeldata.
ai/reelbiomass) and BiomassPro (https://www.innovasea.com/
aquaculture-intelligence/biomass-estimation/) yield high accu-
racy in size estimation (typically < 5% error or no different from
ground truthing data), they also suffer from some shortcomings,
including higher computational costs and a greater risk of camera
occlusion (K. Zhou, Meng, and Cheng 2020) which can lead to
slow uptake in aquaculture. There is, hence, a need to optimise
the use of MV employing single cameras already in use in
aquaculture, including feeding cameras routinely employed to
monitor feeding behaviour in fish cages (Fore et al. 2018), as these
tend to be more affordable and less error-prone than purposely
built stereoscopic cameras. There is also potential for cameras to
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https://www.reeldata.ai/reelbiomass
https://www.innovasea.com/aquaculture-intelligence/biomass-estimation/

TABLE 2 | Neural networks and algorithms used in the papers included in the analysis.

Neural network/algorithm

Description

Reference

Convolutional neural network
(CNN)

Artificial neural network (ANN)

Support vector machine (SVM)

Region-based convolutional neural
network (RCNN)

Faster RCNN

Mask region-based convolutional
neural network (Mask RCNN)

AlexNET

Back propagation neural network
(BPNN)

Density-based spatial clustering of
applications with noise algorithm

An artificial neural network suited for
image recognition tasks

Computer processing systems inspired
by the human brain

A supervised learning algorithm used
for (often binary) classification

Uses a selective search to extract ROIs
(regions of interest). These ROIs are
then fed into a NN to produce output
features. Then it uses SVMs to classify
objects found in each ROI

ROI generation is integrated into the
RCNN

RCNN with added instance
segmentation

A deep learning algorithm

A neural network that uses error
backpropagation to adjust weights
during training, thereby improving

performance
Density-based non-parametric
clustering algorithm. Groups closely

Zhou et al. (2019)
Almero et al. (2019)

Ahmed, Aurpa, and Azad (2022), Sun et al.
(2018), Da Silva Oliveira Junior et al. (2021),
Qiao et al. (2019)

Girshick et al. (2014),Wang et al. (2020), Yu
et al. (2023)

Ren et al. (2016), Wang et al. (2020), Chang,
Wang, et al. (2021a), Mufioz-Benavent et al.
(2022), Ranjan et al. (2023b)

He et al. (2017), Ubina et al. (2022), Ubina et al.
(2023), Palmer et al. (2022), Hong Khai et al.
(2022), Tengtrairat et al. (2022),
Muiioz-Benavent et al. (2022), Petrellis (2021),
-Chang et al. (2022)

Alom et al. (2019), Sun et al. (2018)

Rumelhart, Hinton, and Williams (1986),
Setiawan, Hadiyanto, and Widodo (2022),
Zhang, Li, et al. (2020)

Ester et al. (2018), Risholm et al. (2022), Ubina
et al. (2023)

(DBSCAN) packed points together
Keypoints R-CNN Based on the He et al. Mask RCNN 2017 Deng et al. (2022) https://pytorch.org/vision/
paper main/models/keypoint_rcnn.html

Residual networks (ResNet (101 and
50))

Visual Geometry Group (VGG (16
and 19))

Microsoft Azure Custom Vision

You Only Look Once (YOLO v.3-5
and 7)

A high-performance deep
convolutional neural network with
good generalisation, suitable for image
recognition

A popular deep CNN with numerous
layers used for image recognition

Online service allows creation of
custom computer vision models

Object detection algorithm.

He et&amp;#x000A0;al. (2016), Hong Khai

et al. (2022), Tengtrairat et al. (2022), Feng et al.

(2022), Tonachella et al. (2022), Da Silva
Oliveira Junior et al. (2021), Pache et al. (2022),
Saberioon and Cisar (2018), Ubina et al. (2022),

Zhang, Wu, and Bao (2022)

Gupta et al. (2022), Sun et al. (2018), Da Silva
Oliveira Junior et al. (2021), Petrellis (2021)
https://www.robots.ox.ac.uk/~vgg/

Kim, Choe, and Zhang (2023)
https://azure.microsoft.com/en-
gb/products/ai-services/ai-custom-vision

Redmon et al. (2016), Jang et al. (2022), Lin
et al. (2021), Ranjan et al. (2023a), Wang et al.
(2020), Xu et al. (2023), Marrable et al. (2023),

Murnoz-Benavent et al. (2022), Tonachella et al.
(2022), Abinaya, Susan, and Sidharthan (2022),
Zhang et al. (2024), Boer et al. (2023), Yu et al.
(2023), Wen et al. (2023), Yang, Shi, and Wang

(2022), Zhu et al. (2022), Xiao, Li, and Zhao
(2023), Chang et al. (2022), Banno et al. (2022),

Bonofiglio et al. (2022), Ubina et al. (2023),

Zhang et al. (2022), van Essen et al. (2021)

(Continues)
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TABLE 2 | (Continued)

Neural network/algorithm

Description

Reference

FlowNet2

Inception (v.3-4)

MSENet

Graph CNN

Dual pooling-aggregated attention
network (DPANet)

Multi-column CNN

Principal component analysis and
support vector machine (PCA-SVM)

Semantic segmentation CNN

Feed-forward ANN

Deep neural network

Principal component analysis (PCA)

A CNN architecture that learns the
concept of optical flow directly from
data

Image classification models

A multi-scale enhanced network used
for image fusion

Neural networks that work with graph
structures, capable of learning from the
location of nodes in a graph

A framework for semantic
segmentation that incorporates two
attention modules

A number of columns are trained on
inputs pre-processed in different ways
and the final predictions are obtained
by averaging individual predictions of

all these columns

A machine learning pipeline between

PCA and SVM

Semantic segmentation is where every
pixel in an image is assigned a class
label, for example, ‘background’

The data in the network only goes in
one direction—forward through the
network

An ANN with many layers between
input and output layers

Used for dimensionality reduction in
machine learning—reduce dataset size
while maintaining patterns

Ilg et al. (2017), Wang et al. (2021)

Szegedy et al. (2016), Da Silva Oliveira Junior
et al. (2021), Martinez-Vazquez et al. (2019),
Pache et al. (2022)

Li, Li, et al. (2022), Li et al. (2023)

Danel et al. (2020), Huang et al. (2022)

Zhang, Wu, and Bao (2022)

Zhang et al. (2016), Zhang, Li, et al. (2020)

Qiao et al. (2019)

Ubina et al. (2022)

Rico-Diaz et al. (2020)

Zhang et al. (2021)

Greenacre et al. (2022), Qiao et al. (2019),
Tillett, Mcfarlane, and Lines (2000), Ubina
et al. (2023)

be used in conjunction with acoustic systems (Puig-Pons et al.
2019). Acoustic telemetry has been used to track the behaviour
of cleaner fish in salmon cages (Leclercq et al. 2018) and could
complement MV when there is poor visibility due to turbidity,
poor lighting, reflection or overlapping of fish.

Roughly half of the MV studies (54%) had cameras positioned
outside the water, which makes them easier to deploy and operate
and can facilitate the monitoring of changes in behaviour (Feng
et al. 2022; Jang et al. 2022; G. Wang et al. 2021). However,
recording from above can cause issues with light reflections and
glare that may affect organism detection, something less likely to
occur with underwater cameras. To overcome this problem, the
detection of anomalous values and filtering can be used (Z. Liu
et al. 2014).

When underwater cameras are used, these are usually pointed
towards the surface as this tends to result in better-defined
silhouettes against a lighter background (Atienza-Vanacloig et al.
2016) and can be used for size estimation (Mufioz-Benavent et al.

2018; Muiioz-Benavent et al. 2022). However, the camera system
that can be used will also depend on the type and stage of the
organism being farmed, the aquaculture system, and the welfare
metrics that want to be monitored. For example, in sea cages,
all studies examined used submerged cameras, whereas there is
more flexibility for camera setups in tanks.

The vast majority of MV studies monitored live organisms
kept in the water (76.3%), indicating that there is potential for
welfare to be monitored non-intrusively, avoiding handling or air
exposure. Studies that used MV with organisms out of the water
(Bekkozhayeva and Cisar 2022; Nian et al. 2020; De Vos et al. 2023;
Hao, Yin, and Li 2022) are more likely to cause stress and to some
extent defeat the purpose of non-invasive measures, but can be
useful for size estimation of samples obtained for quality control
or other monitoring purposes (Abinaya, Susan, and Sidharthan
2022; Odone, Trucco, and Verri 2001). There does not appear to be
much difference in the accuracy of size estimation of live and dead
organisms, suggesting that MV can also be useful for biomass
estimation.
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TABLE 3 | Common techniques and software used in the studies included in the analysis.

Technique/software

Description

Reference

Haar classifier

Euclidean distance matrix analysis

Feature pyramid networks (FPN)

Gaussian mixture model

K-means

Mask

Internet of things (I0T)

Intersection over union (IoU)

Region of Interest (ROI)

Background subtraction

Zhang-Suen refinement algorithm

Thresholding

Object detection algorithm that uses
Haar features—the changes in intensity
between adjacent rectangles of pixels

The length of a straight line between two
points

Used to detect objects at different scales

Clustering algorithm—probability based.
Used to group data points together using
a ‘soft clustering’ technique

Clustering algorithm—distance based.

Tries to group the closest points into a

cluster based on the number of groups

wanted. The data are assigned to a group

based on the closest centroid, the
centroids update until the error is

minimised and they no longer change

location

Binary images that highlight certain
regions or objects in an image

A network of devices and sensors
connected through the cloud

Used to evaluate the performance of
object detection algorithms by
comparing the ground truth bounding
box and the predicted bounding box

The region of an image that is used for
detailed analysis—often shown by a
bounding box

Used to detect moving objects by looking
at the difference between the current
frame and a reference frame. Often used
to create a foreground mask

A thinning algorithm that reduces
patterns to a ‘skeleton’

Used to separate out a section of images
into the object of interest and the
background—several types (binary, local,
adaptive, method)

Wilson and Fernandez (2006),
Lopez-Tejeida et al. (2023)

Cisar et al. (2021), Mufioz-Benavent et al.
(2018), Deng et al. (2022), Pache et al.
(2022), Petrellis (2021), Bonofiglio et al.
(2022), Costa et al. (2013)

Lin et al. (2017), Xu et al. (2023), Wen et al.
(2023), Al Duhayyim et al. (2022), Yang, Shi,
and Wang (2022), Zhu et al. (2022)

Zhou et al. (2023), Saberioon and Cisar
(2018), Boer et al. (2023), Al Duhayyim et al.
(2022),Chang et al. (2022)

Ahmed, Seraj, and Islam (2020),
Muiioz-Benavent et al. (2022)

Petrellis (2021),Chang et al. (2022), Viazzi
et al. (2015), Ubina et al. (2023)

Xiao, Li, and Zhao (2023), Deng et al.
(2022), Boer et al. (2023)

Bekkozhayeva and Cisar (2022), Hong Khai
et al. (2022), Lopez-Tejeida et al. (2023),
Zhang et al. (2021), Zhou et al. (2023),
Setiawan, Hadiyanto, and Widodo (2022),
Cisar et al. (2021), Abinaya, Susan, and
Sidharthan (2022), Pache et al. (2022), Al
Duhayyim et al. (2022), Odone, Trucco, and
Verri (2001), Rico-Diaz et al. (2020)

Piccardi (2004), Atienza-Vanacloig et al.
(2016), Zhou et al. (2018), Al Duhayyim
et al. (2022), Rico-Diaz et al. (2020), Huang
and Khabusi (2023)

Zhang and Suen (1984), Zhou et al. (2023)

Sahoo, Soltani, and Wong (1988), Setiawan,
Hadiyanto, and Widodo (2022),
Atienza-Vanacloig et al. (2016), Cisar et al.
(2021), Muiioz-Benavent et al. (2018),
Puig-Pons et al. (2019), Pinkiewicz, Purser,
and Williams (2011), Saberioon and Cisar
(2018), Lines et al. (2001)

(Continues)
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TABLE 3 | (Continued)

Technique/software

Description

Reference

Segmentation

Kalman filter

Data/image augmentation

Keras
Checkerboard/chessboard

calibration

Nearest neighbour methods

Edge detection

TensorFlow

Pytorch

Dividing an image into different
segments—several types (3D, instance,
image, blob, semantic)

An algorithm that can predict future
positions based on current position

Artificial generation of new data using
existing data. In machine vision this
includes applying image transformations
including: cropping, rotation, mirroring,
brightening, colour changes.

API used to build neural networks—uses
Python

The use of a checkerboard or a
chessboard to calibrate a stereo vision
camera

Finds the closest object from the training
set to the object being classified in
N-dimensional space. These objects are
likely the same class as they are close to
each other. Several methods: k,
classification, interpolation

Used to identify the edges of an object in
an image

Open-source software library for
machine learning and Al

Machine learning library

Ghosh et al. (2019), Zhang et al. (2021),
Muiioz-Benavent et al. (2018),
Muiioz-Benavent et al. (2022), Puig-Pons
et al. (2019), Martinez-de Dios, Serna, and
Ollero (2003), Pinkiewicz, Purser, and
Williams (2011), Shi et al. (2022), Ubina
et al. (2022), Wang et al. (2021), Yu et al.
(2022), Chang et al. (2022), Huang and
Khabusi (2023), Ubina et al. (2023), Viazzi
et al. (2015), Palmer et al. (2022)

Pinkiewicz, Purser, and Williams (2011),
van Essen et al. (2021), Welch (2021)

Ahmed, Aurpa, and Azad (2022), Gupta
et al. (2022), Sun et al. (2018), Pache et al.
(2022), Bravata et al. (2020), Gong et al.
(2023), Yu et al. (2023), Yang, Shi, and Wang
(2022), Ranjan et al. (2023a), Huang et al.
(2022), van Essen et al. (2021)

Pache et al. (2022), Bravata et al. (2020),
Petrellis (2021), Zhang, Li, et al. (2020)
https://keras.io/

Saberioon and Cisar (2018), Boer et al.
(2023), Chang et al. (2022), Tonachella et al.
(2022)

Nisbet, Miner, and Yale (2009), Setiawan,
Hadiyanto, and Widodo (2022), Abinaya,
Susan, and Sidharthan (2022), Pinkiewicz,
Purser, and Williams (2011), Saberioon and
Cisar (2018), Xiao, Li, and Zhao (2023)

Sharifi, Fathy, and Mahmoudi (2002),
Setiawan, Hadiyanto, and Widodo (2022),
Muifioz-Benavent et al. (2018), Puig-Pons

et al. (2019), Pinkiewicz, Purser, and
Williams (2011), Petrellis (2021)

Hong Khai et al. (2022), Bravata et al.
(2020), Petrellis (2021)
https://www.tensorflow.org/

Tonachella et al. (2022), Deng et al. (2022),
Wang et al. (2021), Yu et al. (2023)
https://pytorch.org/

3.5 | Overview of Software and Technological

Readiness Level

making detection of overlapping images challenging. Similar

Currently, one of the main limitations on the use of MV in
aquaculture is that almost half of the studies (45%) are based on
observations from experimental tanks (Technological Readiness
Levels, TRL 3-4), which may differ widely from commercial
rearing conditions. For example, some studies used single fish
housed in tanks (Lopez-Tejeida et al. 2023; Al-Jubouri et al. 2017)
to develop algorithms that may not work well under commercial
conditions, where there may be tens of thousands of individuals,

challenges occur in the application of MV in agriculture and
terrestrial animal farming, and solutions developed to facilitate
the identification of occluded individuals in livestock farming (E.
Huang et al. 2021) could also be applied to aquaculture. Alterna-
tively, some researchers mitigate this problem by analysing the
group of animals as a whole rather than trying to track individuals
(Dawkins et al. 2021).

The most commonly used technique for MV is convolutional
neural networks (CNN) using the YOLO software (28%), an
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algorithm used for object detection (Jiang et al. 2021), and more
recently also for pose detection (https://docs.ultralytics.com/
tasks/pose/) which can help identify and monitor behaviours.
Some studies combined YOLO (often as an object detection
module) with different CNNs or other ML techniques (Tonachella
et al. 2022; Ranjan et al. 2023a). Other popular software for MV
includes ResNet (K. He et al. 2016) (used in 11.4% of studies),
which is useful for both industry and research applications.

In addition to CNN software, non-CNN approaches also exist,
including support vector machine (SVM) and deep learning
frameworks such as single shot detectors and faster-RCNNs
(Mohanty, Balasundaram, and Shaik 2022) that can deal with low-
light or high-density conditions. Many of these algorithms benefit
from multi-frame tracking, where the identity of individual fish
can be tracked over multiple frames based on their previous
position. This can be used to estimate swimming velocity and
movement patterns, which are useful for behavioural welfare
monitoring. Identification of individuals based on melanophore
(Garcia de Leaniz et al. 1994) or coating patterns (Andrew et al.
2021) may be possible in some species under some conditions. To
overcome the problem of losing track of individuals that may look
similar, motion estimation using spatial-temporal context (i.e.,
momentum) and object-level warping loss have proved useful in
biomedicine applications (Hayashida, Nishimura, and Bise 2022)
and the same approach could be used in aquaculture (S. Liu et al.
2024). Several other publicly available network architectures are
shown in Tables 2 and 3.

4 | Conclusion

The use of MV in aquaculture has increased rapidly over the
last few years and will likely continue to increase due to con-
sumer demand for ethically produced seafood and the advent
of precision aquaculture. The most common application of MV
in aquaculture has so far been size estimation, which is an
important production trait for farmers, but can also be used to
monitor growth and serve as a welfare indicator. However, there
is a paucity of studies using MV to monitor other aspects of
welfare, such as health conditions, parasites and disease, which
are major problems in aquaculture that need to be addressed.
Real-time behavioural monitoring is another area where we
anticipate MV will be used more, as it can serve as an early
warning system before welfare is seriously compromised. Our
systematic review has also highlighted the need for more research
on taxa other than fish, especially crustaceans, which are widely
farmed. But perhaps the greatest challenge for the application
of MV for welfare monitoring in aquaculture is the paucity of
studies under commercially relevant conditions, characterised
by poor visibility and high densities. Such studies are necessary
to advance the current low TRL. In this sense, the availability
of publicly available image datasets, the recent development of
CNN architectures (like YOLO and ResNet), and the possibility
of using existing feeding-monitoring cameras should facilitate
the uptake of MV for welfare monitoring in the aquaculture
industry. To overcome current limitations and increase the TRL
of MV in aquaculture, several recommendations can be made.
First, we recommend that algorithms be developed in commercial
settings, with a focus on dealing with sub-optimal visibility and
high densities, perhaps using image enhancement or other deep

learning methods. Second, we recommend the development of
multifunctional systems, where multiple welfare metrics can be
monitored by the same system, which may make them more eco-
nomically viable and increase uptake by the aquaculture industry.
Finally, the costs, maintenance, and training requirements for
workers using MV should also be considered; some of these costs
may be reduced if algorithms are trained to work with camera
surveillance equipment already in use or if multifunctional
systems are employed (Kumar, Singh, and Bhamu 2022).
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